DifFace / facelib /detection /retinaface /retinaface_net.py
Zongsheng
first upload
06f26d7
raw
history blame
6.28 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
def conv_bn(inp, oup, stride=1, leaky=0):
return nn.Sequential(
nn.Conv2d(inp, oup, 3, stride, 1, bias=False), nn.BatchNorm2d(oup),
nn.LeakyReLU(negative_slope=leaky, inplace=True))
def conv_bn_no_relu(inp, oup, stride):
return nn.Sequential(
nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
nn.BatchNorm2d(oup),
)
def conv_bn1X1(inp, oup, stride, leaky=0):
return nn.Sequential(
nn.Conv2d(inp, oup, 1, stride, padding=0, bias=False), nn.BatchNorm2d(oup),
nn.LeakyReLU(negative_slope=leaky, inplace=True))
def conv_dw(inp, oup, stride, leaky=0.1):
return nn.Sequential(
nn.Conv2d(inp, inp, 3, stride, 1, groups=inp, bias=False),
nn.BatchNorm2d(inp),
nn.LeakyReLU(negative_slope=leaky, inplace=True),
nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
nn.LeakyReLU(negative_slope=leaky, inplace=True),
)
class SSH(nn.Module):
def __init__(self, in_channel, out_channel):
super(SSH, self).__init__()
assert out_channel % 4 == 0
leaky = 0
if (out_channel <= 64):
leaky = 0.1
self.conv3X3 = conv_bn_no_relu(in_channel, out_channel // 2, stride=1)
self.conv5X5_1 = conv_bn(in_channel, out_channel // 4, stride=1, leaky=leaky)
self.conv5X5_2 = conv_bn_no_relu(out_channel // 4, out_channel // 4, stride=1)
self.conv7X7_2 = conv_bn(out_channel // 4, out_channel // 4, stride=1, leaky=leaky)
self.conv7x7_3 = conv_bn_no_relu(out_channel // 4, out_channel // 4, stride=1)
def forward(self, input):
conv3X3 = self.conv3X3(input)
conv5X5_1 = self.conv5X5_1(input)
conv5X5 = self.conv5X5_2(conv5X5_1)
conv7X7_2 = self.conv7X7_2(conv5X5_1)
conv7X7 = self.conv7x7_3(conv7X7_2)
out = torch.cat([conv3X3, conv5X5, conv7X7], dim=1)
out = F.relu(out)
return out
class FPN(nn.Module):
def __init__(self, in_channels_list, out_channels):
super(FPN, self).__init__()
leaky = 0
if (out_channels <= 64):
leaky = 0.1
self.output1 = conv_bn1X1(in_channels_list[0], out_channels, stride=1, leaky=leaky)
self.output2 = conv_bn1X1(in_channels_list[1], out_channels, stride=1, leaky=leaky)
self.output3 = conv_bn1X1(in_channels_list[2], out_channels, stride=1, leaky=leaky)
self.merge1 = conv_bn(out_channels, out_channels, leaky=leaky)
self.merge2 = conv_bn(out_channels, out_channels, leaky=leaky)
def forward(self, input):
# names = list(input.keys())
# input = list(input.values())
output1 = self.output1(input[0])
output2 = self.output2(input[1])
output3 = self.output3(input[2])
up3 = F.interpolate(output3, size=[output2.size(2), output2.size(3)], mode='nearest')
output2 = output2 + up3
output2 = self.merge2(output2)
up2 = F.interpolate(output2, size=[output1.size(2), output1.size(3)], mode='nearest')
output1 = output1 + up2
output1 = self.merge1(output1)
out = [output1, output2, output3]
return out
class MobileNetV1(nn.Module):
def __init__(self):
super(MobileNetV1, self).__init__()
self.stage1 = nn.Sequential(
conv_bn(3, 8, 2, leaky=0.1), # 3
conv_dw(8, 16, 1), # 7
conv_dw(16, 32, 2), # 11
conv_dw(32, 32, 1), # 19
conv_dw(32, 64, 2), # 27
conv_dw(64, 64, 1), # 43
)
self.stage2 = nn.Sequential(
conv_dw(64, 128, 2), # 43 + 16 = 59
conv_dw(128, 128, 1), # 59 + 32 = 91
conv_dw(128, 128, 1), # 91 + 32 = 123
conv_dw(128, 128, 1), # 123 + 32 = 155
conv_dw(128, 128, 1), # 155 + 32 = 187
conv_dw(128, 128, 1), # 187 + 32 = 219
)
self.stage3 = nn.Sequential(
conv_dw(128, 256, 2), # 219 +3 2 = 241
conv_dw(256, 256, 1), # 241 + 64 = 301
)
self.avg = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(256, 1000)
def forward(self, x):
x = self.stage1(x)
x = self.stage2(x)
x = self.stage3(x)
x = self.avg(x)
# x = self.model(x)
x = x.view(-1, 256)
x = self.fc(x)
return x
class ClassHead(nn.Module):
def __init__(self, inchannels=512, num_anchors=3):
super(ClassHead, self).__init__()
self.num_anchors = num_anchors
self.conv1x1 = nn.Conv2d(inchannels, self.num_anchors * 2, kernel_size=(1, 1), stride=1, padding=0)
def forward(self, x):
out = self.conv1x1(x)
out = out.permute(0, 2, 3, 1).contiguous()
return out.view(out.shape[0], -1, 2)
class BboxHead(nn.Module):
def __init__(self, inchannels=512, num_anchors=3):
super(BboxHead, self).__init__()
self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 4, kernel_size=(1, 1), stride=1, padding=0)
def forward(self, x):
out = self.conv1x1(x)
out = out.permute(0, 2, 3, 1).contiguous()
return out.view(out.shape[0], -1, 4)
class LandmarkHead(nn.Module):
def __init__(self, inchannels=512, num_anchors=3):
super(LandmarkHead, self).__init__()
self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 10, kernel_size=(1, 1), stride=1, padding=0)
def forward(self, x):
out = self.conv1x1(x)
out = out.permute(0, 2, 3, 1).contiguous()
return out.view(out.shape[0], -1, 10)
def make_class_head(fpn_num=3, inchannels=64, anchor_num=2):
classhead = nn.ModuleList()
for i in range(fpn_num):
classhead.append(ClassHead(inchannels, anchor_num))
return classhead
def make_bbox_head(fpn_num=3, inchannels=64, anchor_num=2):
bboxhead = nn.ModuleList()
for i in range(fpn_num):
bboxhead.append(BboxHead(inchannels, anchor_num))
return bboxhead
def make_landmark_head(fpn_num=3, inchannels=64, anchor_num=2):
landmarkhead = nn.ModuleList()
for i in range(fpn_num):
landmarkhead.append(LandmarkHead(inchannels, anchor_num))
return landmarkhead