Spaces:
Sleeping
Sleeping
File size: 14,524 Bytes
8576e15 2590d8a 26b4729 cca57f2 6795bf0 cca57f2 2590d8a cca57f2 ba52fb4 98f6a5e 8576e15 7856036 9cccb55 26b4729 9753cc8 26b4729 84a0eda bdb8f99 26b4729 8576e15 26b4729 9cccb55 26b4729 2590d8a 26b4729 2590d8a 26b4729 2590d8a 26b4729 a122170 26b4729 56dfdea 26b4729 e4245c2 26b4729 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
import streamlit as st
import re
import json
import os,secrets
import pandas as pd
from huggingface_hub import login, InferenceClient
import pickle
from sklearn.metrics.pairwise import cosine_similarity
st.set_page_config(layout="wide")
login(token=os.getenv("TOKEN"))
with open('cv.pkl', 'rb') as file:
cv = pickle.load(file)
with open('vectors.pkl', 'rb') as file:
vectors = pickle.load(file)
with open('items_dict.pkl', 'rb') as file:
items_dict = pd.DataFrame.from_dict(pickle.load(file))
mode=st.toggle(label="MART")
def get_recommendations(user_description, count_vectorizer, count_matrix):
user_description = preprocess_text(user_description)
user_vector = count_vectorizer.transform([user_description])
cosine_similarities = cosine_similarity(user_vector, count_matrix).flatten()
similar_indices = cosine_similarities.argsort()[::-1]
return similar_indices
def show_recipe(recipe):
name_and_dis = f'# {recipe["name"]}\n\n'
name_and_dis += f'{recipe["description"]}\n\n'
ingredients = '## Ingredients:\n'
instructions = '\n## Instructions:\n'
for instruction in recipe["instructions"]:
instructions += f"{instruction['step_number']}. {instruction['instruction']}\n"
st.write(name_and_dis)
col01, col02 = st.columns(2)
with col01:
cont = st.container(border=True, height=500)
for j,i in enumerate(recipe["ingredients"]):
cont.selectbox(i['name'],options=items_dict.iloc[get_recommendations(i['name'],cv,vectors)]["PRODUCT_NAME"].values,key=f"selectbox_{j}_{i['name']}")
with col02:
cont = st.container(border=True, height=500)
cont.write(instructions)
# Initialize the inference client for the Mixtral model
if not mode:
cook,saved=st.tabs(['COOK','SAVED'])
with cook:
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
if 'recipe' not in st.session_state:
st.session_state.recipe = None
if 'recipe_saved' not in st.session_state:
st.session_state.recipe_saved = None
if 'user_direction' not in st.session_state:
st.session_state.user_direction = None
if 'serving_size' not in st.session_state:
st.session_state.serving_size = 2
if 'selected_difficulty' not in st.session_state:
st.session_state.selected_difficulty = "Quick & Easy"
if 'exclusions' not in st.session_state:
st.session_state.exclusions = None
def preprocess_text(text):
# Remove non-alphabet characters and extra spaces
text = re.sub(r'[^a-zA-Z\s]', '', text)
text = re.sub(r'\s+', ' ', text).strip()
return text.lower()
def get_recommendations(user_description, count_vectorizer, count_matrix):
user_description = preprocess_text(user_description)
user_vector = count_vectorizer.transform([user_description])
cosine_similarities = cosine_similarity(user_vector, count_matrix).flatten()
similar_indices = cosine_similarities.argsort()[::-1][:5]
return similar_indices
def create_detailed_prompt(user_direction, exclusions, serving_size, difficulty):
if difficulty == "Quick & Easy":
prompt = (
f"Provide a 'Quick and Easy' recipe for {user_direction} that excludes {exclusions} and has a serving size of {serving_size}. "
f"It should require as few ingredients as possible and should be ready in as little time as possible. "
f"The steps should be simple, and the ingredients should be commonly found in a household pantry. "
f"Provide a detailed ingredient list and step-by-step guide that explains the instructions to prepare in detail."
)
elif difficulty == "Intermediate":
prompt = (
f"Provide a classic recipe for {user_direction} that excludes {exclusions} and has a serving size of {serving_size}. "
f"The recipe should offer a bit of a cooking challenge but should not require professional skills. "
f"The recipe should feature traditional ingredients and techniques that are authentic to its cuisine. "
f"Provide a detailed ingredient list and step-by-step guide that explains the instructions to prepare in detail."
)
elif difficulty == "Professional":
prompt = (
f"Provide an advanced recipe for {user_direction} that excludes {exclusions} and has a serving size of {serving_size}. "
f"The recipe should push the boundaries of culinary arts, integrating unique ingredients, advanced cooking techniques, and innovative presentations. "
f"The recipe should be able to be served at a high-end restaurant or would impress at a gourmet food competition. "
f"Provide a detailed ingredient list and step-by-step guide that explains the instructions to prepare in detail."
)
return prompt
def generate_recipe(user_inputs):
with st.spinner('Building the perfect recipe...'):
prompt = create_detailed_prompt(user_inputs['user_direction'], user_inputs['exclusions'],
user_inputs['serving_size'], user_inputs['difficulty'])
functions = [
{
"name": "provide_recipe",
"description": "Provides a detailed recipe strictly adhering to the user input/specifications, especially ingredient exclusions and the recipe difficulty",
"parameters": {
"type": "object",
"properties": {
"name": {
"type": "string",
"description": "A creative name for the recipe"
},
"description": {
"type": "string",
"description": "a brief one-sentence description of the provided recipe"
},
"ingredients": {
"type": "array",
"items": {
"type": "object",
"properties": {
"name": {
"type": "string",
"description": "Quantity and name of the ingredient"
}
}
}
},
"instructions": {
"type": "array",
"items": {
"type": "object",
"properties": {
"step_number": {
"type": "number",
"description": "The sequence number of this step"
},
"instruction": {
"type": "string",
"description": "Detailed description of what to do in this step"
}
}
}
}
},
"required": [
"name",
"description",
"ingredients",
"instructions"
],
},
}
]
generate_kwargs = dict(
temperature=0.9,
max_new_tokens=10000,
top_p=0.9,
repetition_penalty=1.0,
do_sample=True,
)
prompt += f"\nPlease format the output in JSON. The JSON should include fields for 'name', 'description', 'ingredients', and 'instructions', with each field structured as described below.\n\n{json.dumps(functions)}"
response = client.text_generation(prompt, **generate_kwargs)
st.session_state.recipe = response
st.session_state.recipe_saved = False
def clear_inputs():
st.session_state.user_direction = None
st.session_state.exclusions = None
st.session_state.serving_size = 2
st.session_state.selected_difficulty = "Quick & Easy"
st.title("Let's get cooking")
col1,col2=st.columns(2)
with col1:
st.session_state.user_direction = st.text_area(
"What do you want to cook? Describe anything - a dish, cuisine, event, or vibe.",
value=st.session_state.user_direction,
placeholder="quick snack, asian style bowl with either noodles or rice, something italian",
)
with col2:
st.session_state.serving_size = st.number_input(
"How many servings would you like to cook?",
min_value=1,
max_value=100,
value=st.session_state.serving_size,
step=1
)
difficulty_dictionary = {
"Quick & Easy": {
"description": "Easy recipes with straightforward instructions. Ideal for beginners or those seeking quick and simple cooking.",
},
"Intermediate": {
"description": "Recipes with some intricate steps that invite a little challenge. Perfect for regular cooks wanting to expand their repertoire with new ingredients and techniques.",
},
"Professional": {
"description": "Complex recipes that demand a high level of skill and precision. Suited for seasoned cooks aspiring to professional-level sophistication and creativity.",
}
}
st.session_state.selected_difficulty = st.radio(
"Choose a difficulty level for your recipe.",
[
list(difficulty_dictionary.keys())[0],
list(difficulty_dictionary.keys())[1],
list(difficulty_dictionary.keys())[2]
],
captions=[
difficulty_dictionary["Quick & Easy"]["description"],
difficulty_dictionary["Intermediate"]["description"],
difficulty_dictionary["Professional"]["description"]
],
index=list(difficulty_dictionary).index(st.session_state.selected_difficulty)
)
st.session_state.exclusions = st.text_area(
"Any ingredients you want to exclude?",
value=st.session_state.exclusions,
placeholder="gluten, dairy, nuts, cilantro",
)
fancy_exclusions = ""
if st.session_state.selected_difficulty == "Professional":
exclude_fancy = st.checkbox(
"Exclude cliche professional ingredients? (gold leaf, truffle, edible flowers, microgreens)",
value=True)
if exclude_fancy:
fancy_exclusions = "gold leaf, truffle, edible flowers, microgreens, gold dust"
user_inputs = {
"user_direction": st.session_state.user_direction,
"exclusions": f"{st.session_state.exclusions}, {fancy_exclusions}".strip(", "),
"serving_size": st.session_state.serving_size,
"difficulty": st.session_state.selected_difficulty
}
button_cols_submit = st.columns([1, 1, 4])
with button_cols_submit[0]:
st.button(label='Submit', on_click=generate_recipe, kwargs=dict(user_inputs=user_inputs), type="primary",
use_container_width=True)
with button_cols_submit[1]:
st.button(label='Reset', on_click=clear_inputs, type="secondary", use_container_width=True)
with button_cols_submit[2]:
st.empty()
def create_safe_filename(recipe_name):
# format and generate random URL-safe text string
safe_name = recipe_name.lower()
safe_name = safe_name.replace(" ", "_")
safe_name = re.sub(r"[^a-zA-Z0-9_]", "", safe_name)
safe_name = (safe_name[:50]) if len(safe_name) > 50 else safe_name
unique_token = secrets.token_hex(8)
safe_filename = f"{unique_token}_{safe_name}"
return safe_filename
def save_recipe():
with st.spinner('WAIT SAVING YOUR DISH...'):
filename = create_safe_filename(recipe["name"])
os.makedirs('data', exist_ok=True)
with open(f'./data/{filename}.pkl', 'wb') as f:
pickle.dump(recipe, f)
st.session_state.recipe_saved = True
if st.session_state.recipe is not None:
st.divider()
print(st.session_state.recipe)
recipe = json.loads(st.session_state.recipe)
show_recipe(recipe)
if st.session_state.recipe_saved == True:
disable_button = True
else:
disable_button = False
button_cols_save = st.columns([1, 1, 4])
with button_cols_save[0]:
st.button("Save Recipe", on_click=save_recipe, disabled=disable_button, type="primary")
with button_cols_save[1]:
st.empty()
with button_cols_save[2]:
st.empty()
if st.session_state.recipe_saved == True:
st.success("Recipe Saved!")
|