Zenithwang's picture
Update app.py
5c0a46c verified
import spaces
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
from threading import Thread
import traceback
model_path = 'infly/OpenCoder-1.5B-Instruct'
# Loading the tokenizer and model from Hugging Face's model hub.
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16)
# using CUDA for an optimal experience
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
# Defining a custom stopping criteria class for the model's text generation.
class StopOnTokens(StoppingCriteria):
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
stop_ids = [96539] # IDs of tokens where the generation should stop.
for stop_id in stop_ids:
if input_ids[0][-1] == stop_id: # Checking if the last generated token is a stop token.
return True
return False
system_role= 'system'
user_role = 'user'
assistant_role = "assistant"
sft_start_token = "<|im_start|>"
sft_end_token = "<|im_end|>"
ct_end_token = "<|endoftext|>"
# system_prompt= 'You are a CodeLLM developed by INF.'
# Function to generate model predictions.
@spaces.GPU()
def predict(message, history):
try:
stop = StopOnTokens()
model_messages = []
# print(f'history: {history}')
for i, item in enumerate(history):
model_messages.append({"role": user_role, "content": item[0]})
model_messages.append({"role": assistant_role, "content": item[1]})
model_messages.append({"role": user_role, "content": message})
print(f'model_messages: {model_messages}')
# print(f'model_final_inputs: {tokenizer.apply_chat_template(model_messages, add_generation_prompt=True, tokenize=False)}', flush=True)
model_inputs = tokenizer.apply_chat_template(model_messages, add_generation_prompt=True, return_tensors="pt").to(device)
# model_inputs = tokenizer([messages], return_tensors="pt").to(device)
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=model_inputs,
streamer=streamer,
max_new_tokens=1024,
do_sample=False,
stopping_criteria=StoppingCriteriaList([stop])
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start() # Starting the generation in a separate thread.
partial_message = ""
for new_token in streamer:
partial_message += new_token
if sft_end_token in partial_message: # Breaking the loop if the stop token is generated.
break
yield partial_message
except Exception as e:
print(traceback.format_exc())
css = """
full-height {
height: 100%;
}
"""
prompt_examples = [
'Write a quick sort algorithm in python.',
'Write a greedy snake game using pygame.',
'How to use numpy?'
]
placeholder = """
<div style="opacity: 0.5;">
<img src="https://raw.githubusercontent.com/OpenCoder-llm/opencoder-llm.github.io/refs/heads/main/static/images/opencoder_icon.jpg" style="width:20%;">
</div>
"""
chatbot = gr.Chatbot(label='OpenCoder', placeholder=placeholder)
with gr.Blocks(theme=gr.themes.Soft(), fill_height=True) as demo:
gr.ChatInterface(predict, chatbot=chatbot, fill_height=True, examples=prompt_examples, css=css)
demo.launch() # Launching the web interface.