TXTAgent / app.py
Quazim0t0's picture
Update app.py
aefa164 verified
raw
history blame
5.64 kB
import os
import gradio as gr
from sqlalchemy import text
from smolagents import tool, CodeAgent, HfApiModel
import pandas as pd
from io import StringIO
from database import (
engine,
create_dynamic_table,
clear_database,
insert_rows_into_table,
get_table_schema
)
# Initialize the AI agent
agent = CodeAgent(
tools=[], # Required parameter even if empty
model=HfApiModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct"),
)
def get_data_table():
"""Fetch and return the current table data as DataFrame"""
try:
with engine.connect() as con:
tables = con.execute(text(
"SELECT name FROM sqlite_master WHERE type='table' AND name NOT LIKE 'sqlite_%'"
)).fetchall()
if not tables:
return pd.DataFrame()
table_name = tables[0][0]
with engine.connect() as con:
result = con.execute(text(f"SELECT * FROM {table_name}"))
rows = result.fetchall()
columns = result.keys()
return pd.DataFrame(rows, columns=columns) if rows else pd.DataFrame()
except Exception as e:
return pd.DataFrame({"Error": [str(e)]})
def process_txt_file(file_path):
"""Analyze text file and convert to structured table"""
try:
with open(file_path, 'r') as f:
content = f.read()
# First pass: Structure detection
structure_prompt = f"""
Analyze this text and convert it into a structured table format:
{content}
Return ONLY valid CSV format with appropriate headers.
Maintain original data types and relationships.
"""
csv_output = agent.run(structure_prompt)
# Convert to DataFrame
df = pd.read_csv(StringIO(csv_output))
# Second pass: Data validation
validation_prompt = f"""
Validate this structured data:
{df.head().to_csv()}
Fix any formatting issues and return corrected CSV.
"""
corrected_csv = agent.run(validation_prompt)
df = pd.read_csv(StringIO(corrected_csv))
# Clear existing data and create new table
clear_database()
table = create_dynamic_table(df)
insert_rows_into_table(df.to_dict('records'), table)
return True, "Text analyzed successfully!", df
except Exception as e:
return False, f"Error: {str(e)}", pd.DataFrame()
def handle_upload(file_obj):
"""Handle file upload and processing"""
if file_obj is None:
return "Please upload a text file.", None, "No schema", gr.update(visible=True), gr.update(visible=False)
success, message, df = process_txt_file(file_obj)
if success:
column_info = {col: {'type': str(df[col].dtype)} for col in df.columns}
schema = "\n".join([f"- {col} ({info['type']})" for col, info in column_info.items()])
return (
message,
df,
f"### Detected Schema:\n```\n{schema}\n```",
gr.update(visible=False),
gr.update(visible=True)
)
return message, None, "No schema", gr.update(visible=True), gr.update(visible=False)
def query_analysis(user_query: str) -> str:
"""Handle natural language queries about the data"""
try:
df = get_data_table()
if df.empty:
return "No data available. Upload a text file first."
analysis_prompt = f"""
Analyze this dataset:
{df.head().to_csv()}
Question: {user_query}
Provide a detailed answer considering:
- Data patterns and relationships
- Statistical measures where applicable
- Clear numerical formatting
- Natural language explanations
Structure your response with:
1. Direct answer first
2. Supporting analysis
3. Data references
"""
return agent.run(analysis_prompt)
except Exception as e:
return f"Analysis error: {str(e)}"
# Create Gradio interface
with gr.Blocks() as demo:
with gr.Group() as upload_group:
gr.Markdown("""
# Text Data Analyzer
Upload any text document containing structured information:
- Reports
- Log files
- Research data
- Meeting notes with tabular content
""")
file_input = gr.File(label="Upload Text File", file_types=[".txt"], type="filepath")
status = gr.Textbox(label="Processing Status", interactive=False)
with gr.Group(visible=False) as query_group:
with gr.Row():
with gr.Column(scale=1):
user_input = gr.Textbox(label="Ask about the data")
query_output = gr.Markdown(label="Analysis Results")
with gr.Column(scale=2):
gr.Markdown("### Extracted Data Preview")
data_table = gr.Dataframe(interactive=False)
schema_display = gr.Markdown()
refresh_btn = gr.Button("Refresh View")
# Event handlers
file_input.upload(
fn=handle_upload,
inputs=file_input,
outputs=[status, data_table, schema_display, upload_group, query_group]
)
user_input.submit(
fn=query_analysis,
inputs=user_input,
outputs=query_output
)
refresh_btn.click(
fn=lambda: (get_data_table(), "Schema refreshed"),
outputs=[data_table, schema_display]
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860)