ERA-SESSION13 / app.py
ravi.naik
initial code push
d0ef04f
raw
history blame
6.91 kB
import gradio as gr
import numpy as np
from PIL import Image
import torch
import os
import shutil
import config
from models.yolo import YOLOv3
from utils.data import PascalDataModule
from utils.loss import YoloLoss
from utils.gradcam import generate_gradcam
from utils.utils import generate_result
from markdown import model_stats, data_stats
datamodule = PascalDataModule(
train_csv_path=f"{config.DATASET}/train.csv",
test_csv_path=f"{config.DATASET}/test.csv",
batch_size=config.BATCH_SIZE,
shuffle=config.SHUFFLE,
num_workers=os.cpu_count() - 1,
)
datamodule.setup()
class FilterModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.yolo = YOLOv3.load_from_checkpoint(
"model.ckpt",
in_channels=3,
num_classes=config.NUM_CLASSES,
epochs=config.NUM_EPOCHS,
loss_fn=YoloLoss,
datamodule=datamodule,
learning_rate=config.LEARNING_RATE,
maxlr=config.LEARNING_RATE,
scheduler_steps=len(datamodule.train_dataloader()),
device_count=config.NUM_WORKERS,
)
self.yolo = self.yolo.to("cpu")
def forward(self, x):
x = self.yolo(x)
return x[-1]
model = FilterModel()
prediction_image = None
def upload_file(files):
file_paths = [file.name for file in files]
return file_paths
def read_image(path):
img = Image.open(path)
img.load()
data = np.asarray(img, dtype="uint8")
return data
def sample_images():
all_imgs = os.listdir(config.IMG_DIR)
rand_inds = np.random.random_integers(0, len(all_imgs), 10).tolist()
images = [f"{config.IMG_DIR}/{all_imgs[ind]}" for ind in rand_inds]
return images
def get_gradcam_images(gradcam_layer, images, gradcam_opacity):
gradcam_images = []
target_layers = [model.yolo.layers[int(gradcam_layer)]]
gradcam_images = generate_gradcam(
model=model,
target_layers=target_layers,
images=images,
use_cuda=False,
transparency=gradcam_opacity,
)
return gradcam_images
def show_hide_gradcam(status):
if not status:
return [gr.update(visible=False) for i in range(3)]
return [gr.update(visible=True) for i in range(3)]
def set_prediction_image(evt: gr.SelectData, gallery):
global prediction_image
if isinstance(gallery[evt.index], dict):
prediction_image = gallery[evt.index]["name"]
else:
prediction_image = gallery[evt.index][0]["name"]
def predict(is_gradcam, gradcam_layer, gradcam_opacity):
gradcam_images = None
img = read_image(prediction_image)
image_transformed = config.test_transforms(image=img, bboxes=[])["image"]
if is_gradcam:
images = [image_transformed]
gradcam_images = get_gradcam_images(gradcam_layer, images, gradcam_opacity)
data = image_transformed.unsqueeze(0)
if not os.path.exists("output"):
os.mkdir("output")
else:
shutil.rmtree("output")
os.mkdir("output")
generate_result(
model=model.yolo,
data=data,
thresh=0.6,
iou_thresh=0.5,
anchors=model.yolo.scaled_anchors,
)
result_images = os.listdir("output")
result_images = [
f"output/{file}" for file in result_images if file.endswith(".png")
]
return {
output: gr.update(value=result_images[0]),
gradcam_output: gr.update(value=gradcam_images[0]),
}
with gr.Blocks() as app:
gr.Markdown("## ERA Session13 - PASCAL-VOC Object Detection with YoloV3")
with gr.Row():
with gr.Column():
with gr.Box():
is_gradcam = gr.Checkbox(
label="GradCAM Images",
info="Display GradCAM images?",
)
gradcam_layer = gr.Dropdown(
choices=list(range(len(model.yolo.layers))),
label="Select the layer",
info="Please select the layer for which the GradCAM is required",
interactive=True,
visible=False,
)
gradcam_opacity = gr.Slider(
minimum=0,
maximum=1,
value=0.6,
label="Opacity",
info="Opacity of GradCAM output",
interactive=True,
visible=False,
)
is_gradcam.input(
show_hide_gradcam,
inputs=[is_gradcam],
outputs=[gradcam_layer, gradcam_opacity],
)
with gr.Box():
# file_output = gr.File(file_types=["image"])
with gr.Group():
upload_gallery = gr.Gallery(
value=None,
label="Uploaded images",
show_label=False,
elem_id="gallery_upload",
columns=5,
rows=2,
height="auto",
object_fit="contain",
)
upload_button = gr.UploadButton(
"Click to Upload images",
file_types=["image"],
file_count="multiple",
)
upload_button.upload(upload_file, upload_button, upload_gallery)
with gr.Group():
sample_gallery = gr.Gallery(
value=sample_images,
label="Sample images",
show_label=True,
elem_id="gallery_sample",
columns=5,
rows=2,
height="auto",
object_fit="contain",
)
upload_gallery.select(set_prediction_image, inputs=[upload_gallery])
sample_gallery.select(set_prediction_image, inputs=[sample_gallery])
run_btn = gr.Button()
with gr.Column():
with gr.Box():
output = gr.Image(value=None, label="Model Result")
with gr.Box():
gradcam_output = gr.Image(value=None, label="GradCAM Image")
run_btn.click(
predict,
inputs=[
is_gradcam,
gradcam_layer,
gradcam_opacity,
],
outputs=[output, gradcam_output],
)
with gr.Row():
with gr.Box():
with gr.Row():
with gr.Column():
with gr.Box():
gr.Markdown(model_stats)
with gr.Column():
with gr.Box():
gr.Markdown(data_stats)
app.launch()