ERA-SESSION13 / config.py
ravi.naik
initial code push
d0ef04f
import albumentations as A
import cv2
import torch
from albumentations.pytorch import ToTensorV2
from utils.utils import seed_everything
DATASET = "PASCAL_VOC"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# seed_everything() # If you want deterministic behavior
DEVICE_COUNT = torch.cuda.device_count()
NUM_WORKERS = 0
BATCH_SIZE = 128
SHUFFLE = True
IMAGE_SIZE = 416
NUM_CLASSES = 20
LEARNING_RATE = 1e-3
WEIGHT_DECAY = 1e-4
NUM_EPOCHS = 40
CONF_THRESHOLD = 0.05
MAP_IOU_THRESH = 0.5
NMS_IOU_THRESH = 0.45
S = [IMAGE_SIZE // 32, IMAGE_SIZE // 16, IMAGE_SIZE // 8]
PIN_MEMORY = True
LOAD_MODEL = False
SAVE_MODEL = True
CHECKPOINT_FILE = "checkpoint.pth.tar"
IMG_DIR = DATASET + "/images/"
LABEL_DIR = DATASET + "/labels/"
P_MOSAIC = 0.5
ANCHORS = [
[(0.28, 0.22), (0.38, 0.48), (0.9, 0.78)],
[(0.07, 0.15), (0.15, 0.11), (0.14, 0.29)],
[(0.02, 0.03), (0.04, 0.07), (0.08, 0.06)],
] # Note these have been rescaled to be between [0, 1]
means = [0.485, 0.456, 0.406]
scale = 1.1
train_transforms = A.Compose(
[
A.LongestMaxSize(max_size=int(IMAGE_SIZE * scale)),
A.PadIfNeeded(
min_height=int(IMAGE_SIZE * scale),
min_width=int(IMAGE_SIZE * scale),
border_mode=cv2.BORDER_CONSTANT,
),
A.Rotate(limit=10, interpolation=1, border_mode=4),
A.RandomCrop(width=IMAGE_SIZE, height=IMAGE_SIZE),
A.ColorJitter(brightness=0.6, contrast=0.6, saturation=0.6, hue=0.6, p=0.4),
A.OneOf(
[
A.ShiftScaleRotate(
rotate_limit=20, p=0.5, border_mode=cv2.BORDER_CONSTANT
),
# A.Affine(shear=15, p=0.5, mode="constant"),
],
p=1.0,
),
A.HorizontalFlip(p=0.5),
A.Blur(p=0.1),
A.CLAHE(p=0.1),
A.Posterize(p=0.1),
A.ToGray(p=0.1),
A.ChannelShuffle(p=0.05),
A.Normalize(
mean=[0, 0, 0],
std=[1, 1, 1],
max_pixel_value=255,
),
ToTensorV2(),
],
bbox_params=A.BboxParams(
format="yolo",
min_visibility=0.4,
label_fields=[],
),
)
test_transforms = A.Compose(
[
A.LongestMaxSize(max_size=IMAGE_SIZE),
A.PadIfNeeded(
min_height=IMAGE_SIZE, min_width=IMAGE_SIZE, border_mode=cv2.BORDER_CONSTANT
),
A.Normalize(
mean=[0, 0, 0],
std=[1, 1, 1],
max_pixel_value=255,
),
ToTensorV2(),
],
bbox_params=A.BboxParams(format="yolo", min_visibility=0.4, label_fields=[]),
)
PASCAL_CLASSES = [
"aeroplane",
"bicycle",
"bird",
"boat",
"bottle",
"bus",
"car",
"cat",
"chair",
"cow",
"diningtable",
"dog",
"horse",
"motorbike",
"person",
"pottedplant",
"sheep",
"sofa",
"train",
"tvmonitor",
]
COCO_LABELS = [
"person",
"bicycle",
"car",
"motorcycle",
"airplane",
"bus",
"train",
"truck",
"boat",
"traffic light",
"fire hydrant",
"stop sign",
"parking meter",
"bench",
"bird",
"cat",
"dog",
"horse",
"sheep",
"cow",
"elephant",
"bear",
"zebra",
"giraffe",
"backpack",
"umbrella",
"handbag",
"tie",
"suitcase",
"frisbee",
"skis",
"snowboard",
"sports ball",
"kite",
"baseball bat",
"baseball glove",
"skateboard",
"surfboard",
"tennis racket",
"bottle",
"wine glass",
"cup",
"fork",
"knife",
"spoon",
"bowl",
"banana",
"apple",
"sandwich",
"orange",
"broccoli",
"carrot",
"hot dog",
"pizza",
"donut",
"cake",
"chair",
"couch",
"potted plant",
"bed",
"dining table",
"toilet",
"tv",
"laptop",
"mouse",
"remote",
"keyboard",
"cell phone",
"microwave",
"oven",
"toaster",
"sink",
"refrigerator",
"book",
"clock",
"vase",
"scissors",
"teddy bear",
"hair drier",
"toothbrush",
]