Spaces:
Sleeping
Sleeping
import torch | |
with open("data/input.txt") as f: | |
text = f.read() | |
chars = sorted(list(set(text))) | |
vocab_size = len(chars) | |
stoi = {ch: i for i, ch in enumerate(chars)} | |
itos = {i: ch for i, ch in enumerate(chars)} | |
def encode(s): | |
return [stoi[c] for c in s] | |
def decode(l): | |
return "".join([itos[i] for i in l]) | |
data = torch.tensor(encode(text), dtype=torch.long) | |
n = int(0.9 * len(data)) | |
train_data = data[:n] | |
val_data = data[n:] | |
def get_batch(split, block_size, batch_size): | |
data = train_data if split == "train" else val_data | |
ix = torch.randint(len(data) - block_size, (batch_size,)) | |
x = torch.stack([data[i : i + block_size] for i in ix]) | |
y = torch.stack([data[i + 1 : i + block_size + 1] for i in ix]) | |
return x, y | |