Spaces:
Sleeping
Sleeping
File size: 12,537 Bytes
c9a1c2d 3810c45 c9a1c2d 089249c c9a1c2d b76cf08 089249c c9a1c2d 089249c 3810c45 089249c b76cf08 089249c b76cf08 089249c b76cf08 089249c b76cf08 089249c b76cf08 089249c c9a1c2d b76cf08 c9a1c2d 089249c c9a1c2d 089249c c9a1c2d b76cf08 c9a1c2d 089249c c9a1c2d 089249c c9a1c2d 089249c 14d4a0b 089249c b76cf08 089249c b76cf08 089249c b76cf08 089249c b76cf08 089249c 60ad418 3810c45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
import gradio as gr
from helper.examples.examples import DemoImages
from helper.utils import TrafficDataHandler
from src.htr_pipeline.gradio_backend import FastTrack, SingletonModelLoader
model_loader = SingletonModelLoader()
fast_track = FastTrack(model_loader)
images_for_demo = DemoImages()
terminate = False
with gr.Blocks() as htr_tool_tab:
with gr.Row(equal_height=True):
with gr.Column(scale=2):
with gr.Row():
fast_track_input_region_image = gr.Image(
label="Image to run HTR on", type="numpy", tool="editor", elem_id="image_upload", height=395
)
with gr.Row():
with gr.Tab("Run & Settings") as tab_output_and_setting_selector:
with gr.Row():
stop_htr_button = gr.Button(
value="Stop HTR",
variant="stop",
)
htr_pipeline_button = gr.Button(
"Run HTR",
variant="primary",
visible=True,
elem_id="run_pipeline_button",
)
htr_pipeline_button_var = gr.State(value="htr_pipeline_button")
htr_pipeline_button_api = gr.Button("Run pipeline", variant="primary", visible=False, scale=1)
fast_file_downlod = gr.File(
label="Download output file", visible=True, scale=1, height=100, elem_id="download_file"
)
with gr.Tab("Visualize results") as tab_image_viewer_selector:
with gr.Row():
gr.Button(
value="Image Viewer (demo)",
variant="secondary",
link="https://huggingface.co/spaces/Riksarkivet/Viewer_demo",
interactive=True,
)
run_image_visualizer_button = gr.Button(
value="Visualize results", variant="primary", interactive=True
)
selection_text_from_image_viewer = gr.Textbox(
interactive=False, label="Text Selector", info="Select a mask on Image Viewer to return text"
)
with gr.Tab("(WIP) Compare runs") as tab_model_compare_selector:
with gr.Box():
gr.Markdown(
"Compare different runs with uploaded Ground Truth and calculate CER. You will also be able to upload output format files"
)
calc_cer_button_fast = gr.Button("Calculate CER", variant="primary", visible=True)
with gr.Column(scale=4):
with gr.Box():
with gr.Row(visible=True) as output_and_setting_tab:
with gr.Column(scale=2):
fast_name_files_placeholder = gr.Markdown(visible=False)
gr.Examples(
examples=images_for_demo.examples_list,
inputs=[fast_name_files_placeholder, fast_track_input_region_image],
label="Example images",
examples_per_page=5,
)
with gr.Column(scale=3):
with gr.Row():
with gr.Group():
gr.Markdown(" ⚙️ Settings ")
with gr.Row():
radio_file_input = gr.CheckboxGroup(
choices=["Txt", "Page XML"],
value=["Txt", "Page XML"],
label="Output file extension",
# info="Only txt and page xml is supported for now!",
scale=1,
)
with gr.Row():
gr.Checkbox(
value=True,
label="Binarize image",
info="Binarize image to reduce background noise",
)
gr.Checkbox(
value=True,
label="Output prediction threshold",
info="Output XML with prediction score",
)
with gr.Accordion("Models", open=False):
with gr.Group():
with gr.Row():
htr_tool_region_segment_model_dropdown = gr.Dropdown(
choices=["Riksarkivet/rtmdet_region"],
value="Riksarkivet/rtmdet_region",
label="Region segmentation models",
info="More models will be added",
)
gr.Slider(
minimum=0.4,
maximum=1,
value=0.5,
step=0.05,
label="P-threshold",
info="""Filter confidence score for a prediction score to be considered""",
)
with gr.Row():
htr_tool_line_segment_model_dropdown = gr.Dropdown(
choices=["Riksarkivet/rtmdet_lines"],
value="Riksarkivet/rtmdet_lines",
label="Line segmentation models",
info="More models will be added",
)
gr.Slider(
minimum=0.4,
maximum=1,
value=0.5,
step=0.05,
label="P-threshold",
info="""Filter confidence score for a prediction score to be considered""",
)
with gr.Row():
htr_tool_transcriber_model_dropdown = gr.Dropdown(
choices=["Riksarkivet/satrn_htr", "microsoft/trocr-base-handwritten"],
value="Riksarkivet/satrn_htr",
label="Text recognition models",
info="More models will be added",
)
gr.Slider(
value=0.6,
minimum=0.5,
maximum=1,
label="HTR threshold",
info="Prediction score threshold for transcribed lines",
scale=1,
)
with gr.Row(visible=False) as image_viewer_tab:
text_polygon_dict = gr.Variable()
fast_track_output_image = gr.Image(
label="Image Viewer", type="numpy", height=600, interactive=False
)
with gr.Column(visible=False) as model_compare_selector:
with gr.Row():
gr.Radio(
choices=["Compare Page XML", "Compare different runs"],
value="Compare Page XML",
info="Compare different runs from HTRFLOW or with external runs, e.g with Transkibus ",
)
with gr.Row():
gr.UploadButton(label="Run A")
gr.UploadButton(label="Run B")
gr.UploadButton(label="Ground Truth")
with gr.Row():
gr.HighlightedText(
label="Text diff runs",
combine_adjacent=True,
show_legend=True,
color_map={"+": "red", "-": "green"},
)
with gr.Row():
gr.HighlightedText(
label="Text diff ground truth",
combine_adjacent=True,
show_legend=True,
color_map={"+": "red", "-": "green"},
)
with gr.Row():
with gr.Column(scale=1):
with gr.Row(equal_height=False):
cer_output_fast = gr.Textbox(label="CER:")
with gr.Column(scale=2):
pass
xml_rendered_placeholder_for_api = gr.Textbox(visible=False)
htr_event_click_event = htr_pipeline_button.click(
fast_track.segment_to_xml,
inputs=[fast_track_input_region_image, radio_file_input],
outputs=[fast_file_downlod, fast_file_downlod],
)
htr_pipeline_button_api.click(
fast_track.segment_to_xml_api,
inputs=[fast_track_input_region_image],
outputs=[xml_rendered_placeholder_for_api],
api_name="predict",
)
def dummy_update_htr_tool_transcriber_model_dropdown(htr_tool_transcriber_model_dropdown):
return gr.update(value="Riksarkivet/satrn_htr")
htr_tool_transcriber_model_dropdown.change(
fn=dummy_update_htr_tool_transcriber_model_dropdown,
inputs=htr_tool_transcriber_model_dropdown,
outputs=htr_tool_transcriber_model_dropdown,
)
def update_selected_tab_output_and_setting():
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
def update_selected_tab_image_viewer():
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
def update_selected_tab_model_compare():
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
tab_output_and_setting_selector.select(
fn=update_selected_tab_output_and_setting,
outputs=[output_and_setting_tab, image_viewer_tab, model_compare_selector],
)
tab_image_viewer_selector.select(
fn=update_selected_tab_image_viewer, outputs=[output_and_setting_tab, image_viewer_tab, model_compare_selector]
)
tab_model_compare_selector.select(
fn=update_selected_tab_model_compare, outputs=[output_and_setting_tab, image_viewer_tab, model_compare_selector]
)
def stop_function():
from src.htr_pipeline.utils import pipeline_inferencer
pipeline_inferencer.terminate = True
gr.Info("The HTR execution was halted")
stop_htr_button.click(fn=stop_function, inputs=None, outputs=None, cancels=[htr_event_click_event])
run_image_visualizer_button.click(
fn=fast_track.visualize_image_viewer,
inputs=fast_track_input_region_image,
outputs=[fast_track_output_image, text_polygon_dict],
)
fast_track_output_image.select(
fast_track.get_text_from_coords, inputs=text_polygon_dict, outputs=selection_text_from_image_viewer
)
htr_pipeline_button.click(fn=TrafficDataHandler.store_metric_data, inputs=htr_pipeline_button_var)
|