Spaces:
Sleeping
Sleeping
from sklearn.preprocessing import LabelEncoder | |
from sklearn.model_selection import train_test_split | |
from keras.models import Sequential | |
from keras.layers import Dense | |
import pandas as pd | |
data = pd.read_csv(r"C:\Users\SARUMATHI\Desktop\Prakruti_2\Book_updated.csv") | |
target = data["Prakruti type"] | |
train = data.drop(['Prakruti type'],axis = 1) | |
classes = train.columns | |
encoders = [] | |
unique_output=[] | |
for col in train.columns: | |
le = LabelEncoder() | |
unique_output.append((train[col].unique()).tolist()) | |
train[col] = le.fit_transform(train[col]) | |
encoders.append(le) | |
target2 = pd.get_dummies(target) | |
model = Sequential([ | |
Dense(64,activation='relu',input_shape=(18,)), | |
Dense(32,activation='relu'), | |
Dense(7,activation='softmax') | |
]) | |
model.compile(optimizer='adam',metrics='categorical_crossentropy',loss='mean_squared_error') | |
x_tr,x_te,y_tr,y_te=train_test_split(train,target2,random_state=123,test_size=0.2) | |
model.fit(x_tr,y_tr,epochs = 1000,batch_size=12,verbose= 1) | |