Spaces:
Runtime error
Runtime error
File size: 8,576 Bytes
64e7f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
import time
import sys
import types
import chardet
import numpy as np
import torch
import torch.distributed as dist
from utils.ckpt_utils import load_ckpt
def reduce_tensors(metrics):
new_metrics = {}
for k, v in metrics.items():
if isinstance(v, torch.Tensor):
dist.all_reduce(v)
v = v / dist.get_world_size()
if type(v) is dict:
v = reduce_tensors(v)
new_metrics[k] = v
return new_metrics
def tensors_to_scalars(tensors):
if isinstance(tensors, torch.Tensor):
tensors = tensors.item()
return tensors
elif isinstance(tensors, dict):
new_tensors = {}
for k, v in tensors.items():
v = tensors_to_scalars(v)
new_tensors[k] = v
return new_tensors
elif isinstance(tensors, list):
return [tensors_to_scalars(v) for v in tensors]
else:
return tensors
def tensors_to_np(tensors):
if isinstance(tensors, dict):
new_np = {}
for k, v in tensors.items():
if isinstance(v, torch.Tensor):
v = v.cpu().numpy()
if type(v) is dict:
v = tensors_to_np(v)
new_np[k] = v
elif isinstance(tensors, list):
new_np = []
for v in tensors:
if isinstance(v, torch.Tensor):
v = v.cpu().numpy()
if type(v) is dict:
v = tensors_to_np(v)
new_np.append(v)
elif isinstance(tensors, torch.Tensor):
v = tensors
if isinstance(v, torch.Tensor):
v = v.cpu().numpy()
if type(v) is dict:
v = tensors_to_np(v)
new_np = v
else:
raise Exception(f'tensors_to_np does not support type {type(tensors)}.')
return new_np
def move_to_cpu(tensors):
ret = {}
for k, v in tensors.items():
if isinstance(v, torch.Tensor):
v = v.cpu()
if type(v) is dict:
v = move_to_cpu(v)
ret[k] = v
return ret
def move_to_cuda(batch, gpu_id=0):
# base case: object can be directly moved using `cuda` or `to`
if callable(getattr(batch, 'cuda', None)):
return batch.cuda(gpu_id, non_blocking=True)
elif callable(getattr(batch, 'to', None)):
return batch.to(torch.device('cuda', gpu_id), non_blocking=True)
elif isinstance(batch, list):
for i, x in enumerate(batch):
batch[i] = move_to_cuda(x, gpu_id)
return batch
elif isinstance(batch, tuple):
batch = list(batch)
for i, x in enumerate(batch):
batch[i] = move_to_cuda(x, gpu_id)
return tuple(batch)
elif isinstance(batch, dict):
for k, v in batch.items():
batch[k] = move_to_cuda(v, gpu_id)
return batch
return batch
class AvgrageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.avg = 0
self.sum = 0
self.cnt = 0
def update(self, val, n=1):
self.sum += val * n
self.cnt += n
self.avg = self.sum / self.cnt
def collate_1d(values, pad_idx=0, left_pad=False, shift_right=False, max_len=None, shift_id=1):
"""Convert a list of 1d tensors into a padded 2d tensor."""
size = max(v.size(0) for v in values) if max_len is None else max_len
res = values[0].new(len(values), size).fill_(pad_idx)
def copy_tensor(src, dst):
assert dst.numel() == src.numel()
if shift_right:
dst[1:] = src[:-1]
dst[0] = shift_id
else:
dst.copy_(src)
for i, v in enumerate(values):
copy_tensor(v, res[i][size - len(v):] if left_pad else res[i][:len(v)])
return res
def collate_2d(values, pad_idx=0, left_pad=False, shift_right=False, max_len=None):
"""Convert a list of 2d tensors into a padded 3d tensor."""
size = max(v.size(0) for v in values) if max_len is None else max_len
res = values[0].new(len(values), size, values[0].shape[1]).fill_(pad_idx)
def copy_tensor(src, dst):
assert dst.numel() == src.numel()
if shift_right:
dst[1:] = src[:-1]
else:
dst.copy_(src)
for i, v in enumerate(values):
copy_tensor(v, res[i][size - len(v):] if left_pad else res[i][:len(v)])
return res
def _is_batch_full(batch, num_tokens, max_tokens, max_sentences):
if len(batch) == 0:
return 0
if len(batch) == max_sentences:
return 1
if num_tokens > max_tokens:
return 1
return 0
def batch_by_size(
indices, num_tokens_fn, max_tokens=None, max_sentences=None,
required_batch_size_multiple=1, distributed=False
):
"""
Yield mini-batches of indices bucketed by size. Batches may contain
sequences of different lengths.
Args:
indices (List[int]): ordered list of dataset indices
num_tokens_fn (callable): function that returns the number of tokens at
a given index
max_tokens (int, optional): max number of tokens in each batch
(default: None).
max_sentences (int, optional): max number of sentences in each
batch (default: None).
required_batch_size_multiple (int, optional): require batch size to
be a multiple of N (default: 1).
"""
max_tokens = max_tokens if max_tokens is not None else sys.maxsize
max_sentences = max_sentences if max_sentences is not None else sys.maxsize
bsz_mult = required_batch_size_multiple
if isinstance(indices, types.GeneratorType):
indices = np.fromiter(indices, dtype=np.int64, count=-1)
sample_len = 0
sample_lens = []
batch = []
batches = []
for i in range(len(indices)):
idx = indices[i]
num_tokens = num_tokens_fn(idx)
sample_lens.append(num_tokens)
sample_len = max(sample_len, num_tokens)
assert sample_len <= max_tokens, (
"sentence at index {} of size {} exceeds max_tokens "
"limit of {}!".format(idx, sample_len, max_tokens)
)
num_tokens = (len(batch) + 1) * sample_len
if _is_batch_full(batch, num_tokens, max_tokens, max_sentences):
mod_len = max(
bsz_mult * (len(batch) // bsz_mult),
len(batch) % bsz_mult,
)
batches.append(batch[:mod_len])
batch = batch[mod_len:]
sample_lens = sample_lens[mod_len:]
sample_len = max(sample_lens) if len(sample_lens) > 0 else 0
batch.append(idx)
if len(batch) > 0:
batches.append(batch)
return batches
def unpack_dict_to_list(samples):
samples_ = []
bsz = samples.get('outputs').size(0)
for i in range(bsz):
res = {}
for k, v in samples.items():
try:
res[k] = v[i]
except:
pass
samples_.append(res)
return samples_
def remove_padding(x, padding_idx=0):
if x is None:
return None
assert len(x.shape) in [1, 2]
if len(x.shape) == 2: # [T, H]
return x[np.abs(x).sum(-1) != padding_idx]
elif len(x.shape) == 1: # [T]
return x[x != padding_idx]
class Timer:
timer_map = {}
def __init__(self, name, enable=False):
if name not in Timer.timer_map:
Timer.timer_map[name] = 0
self.name = name
self.enable = enable
def __enter__(self):
if self.enable:
if torch.cuda.is_available():
torch.cuda.synchronize()
self.t = time.time()
def __exit__(self, exc_type, exc_val, exc_tb):
if self.enable:
if torch.cuda.is_available():
torch.cuda.synchronize()
Timer.timer_map[self.name] += time.time() - self.t
if self.enable:
print(f'[Timer] {self.name}: {Timer.timer_map[self.name]}')
def print_arch(model, model_name='model'):
print(f"| {model_name} Arch: ", model)
num_params(model, model_name=model_name)
def num_params(model, print_out=True, model_name="model"):
parameters = filter(lambda p: p.requires_grad, model.parameters())
parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000
if print_out:
print(f'| {model_name} Trainable Parameters: %.3fM' % parameters)
return parameters
def get_encoding(file):
with open(file, 'rb') as f:
encoding = chardet.detect(f.read())['encoding']
if encoding == 'GB2312':
encoding = 'GB18030'
return encoding
|