File size: 8,576 Bytes
64e7f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import time
import sys
import types

import chardet
import numpy as np
import torch
import torch.distributed as dist
from utils.ckpt_utils import load_ckpt


def reduce_tensors(metrics):
    new_metrics = {}
    for k, v in metrics.items():
        if isinstance(v, torch.Tensor):
            dist.all_reduce(v)
            v = v / dist.get_world_size()
        if type(v) is dict:
            v = reduce_tensors(v)
        new_metrics[k] = v
    return new_metrics


def tensors_to_scalars(tensors):
    if isinstance(tensors, torch.Tensor):
        tensors = tensors.item()
        return tensors
    elif isinstance(tensors, dict):
        new_tensors = {}
        for k, v in tensors.items():
            v = tensors_to_scalars(v)
            new_tensors[k] = v
        return new_tensors
    elif isinstance(tensors, list):
        return [tensors_to_scalars(v) for v in tensors]
    else:
        return tensors


def tensors_to_np(tensors):
    if isinstance(tensors, dict):
        new_np = {}
        for k, v in tensors.items():
            if isinstance(v, torch.Tensor):
                v = v.cpu().numpy()
            if type(v) is dict:
                v = tensors_to_np(v)
            new_np[k] = v
    elif isinstance(tensors, list):
        new_np = []
        for v in tensors:
            if isinstance(v, torch.Tensor):
                v = v.cpu().numpy()
            if type(v) is dict:
                v = tensors_to_np(v)
            new_np.append(v)
    elif isinstance(tensors, torch.Tensor):
        v = tensors
        if isinstance(v, torch.Tensor):
            v = v.cpu().numpy()
        if type(v) is dict:
            v = tensors_to_np(v)
        new_np = v
    else:
        raise Exception(f'tensors_to_np does not support type {type(tensors)}.')
    return new_np


def move_to_cpu(tensors):
    ret = {}
    for k, v in tensors.items():
        if isinstance(v, torch.Tensor):
            v = v.cpu()
        if type(v) is dict:
            v = move_to_cpu(v)
        ret[k] = v
    return ret


def move_to_cuda(batch, gpu_id=0):
    # base case: object can be directly moved using `cuda` or `to`
    if callable(getattr(batch, 'cuda', None)):
        return batch.cuda(gpu_id, non_blocking=True)
    elif callable(getattr(batch, 'to', None)):
        return batch.to(torch.device('cuda', gpu_id), non_blocking=True)
    elif isinstance(batch, list):
        for i, x in enumerate(batch):
            batch[i] = move_to_cuda(x, gpu_id)
        return batch
    elif isinstance(batch, tuple):
        batch = list(batch)
        for i, x in enumerate(batch):
            batch[i] = move_to_cuda(x, gpu_id)
        return tuple(batch)
    elif isinstance(batch, dict):
        for k, v in batch.items():
            batch[k] = move_to_cuda(v, gpu_id)
        return batch
    return batch


class AvgrageMeter(object):

    def __init__(self):
        self.reset()

    def reset(self):
        self.avg = 0
        self.sum = 0
        self.cnt = 0

    def update(self, val, n=1):
        self.sum += val * n
        self.cnt += n
        self.avg = self.sum / self.cnt


def collate_1d(values, pad_idx=0, left_pad=False, shift_right=False, max_len=None, shift_id=1):
    """Convert a list of 1d tensors into a padded 2d tensor."""
    size = max(v.size(0) for v in values) if max_len is None else max_len
    res = values[0].new(len(values), size).fill_(pad_idx)

    def copy_tensor(src, dst):
        assert dst.numel() == src.numel()
        if shift_right:
            dst[1:] = src[:-1]
            dst[0] = shift_id
        else:
            dst.copy_(src)

    for i, v in enumerate(values):
        copy_tensor(v, res[i][size - len(v):] if left_pad else res[i][:len(v)])
    return res


def collate_2d(values, pad_idx=0, left_pad=False, shift_right=False, max_len=None):
    """Convert a list of 2d tensors into a padded 3d tensor."""
    size = max(v.size(0) for v in values) if max_len is None else max_len
    res = values[0].new(len(values), size, values[0].shape[1]).fill_(pad_idx)

    def copy_tensor(src, dst):
        assert dst.numel() == src.numel()
        if shift_right:
            dst[1:] = src[:-1]
        else:
            dst.copy_(src)

    for i, v in enumerate(values):
        copy_tensor(v, res[i][size - len(v):] if left_pad else res[i][:len(v)])
    return res


def _is_batch_full(batch, num_tokens, max_tokens, max_sentences):
    if len(batch) == 0:
        return 0
    if len(batch) == max_sentences:
        return 1
    if num_tokens > max_tokens:
        return 1
    return 0


def batch_by_size(
        indices, num_tokens_fn, max_tokens=None, max_sentences=None,
        required_batch_size_multiple=1, distributed=False
):
    """
    Yield mini-batches of indices bucketed by size. Batches may contain
    sequences of different lengths.

    Args:
        indices (List[int]): ordered list of dataset indices
        num_tokens_fn (callable): function that returns the number of tokens at
            a given index
        max_tokens (int, optional): max number of tokens in each batch
            (default: None).
        max_sentences (int, optional): max number of sentences in each
            batch (default: None).
        required_batch_size_multiple (int, optional): require batch size to
            be a multiple of N (default: 1).
    """
    max_tokens = max_tokens if max_tokens is not None else sys.maxsize
    max_sentences = max_sentences if max_sentences is not None else sys.maxsize
    bsz_mult = required_batch_size_multiple

    if isinstance(indices, types.GeneratorType):
        indices = np.fromiter(indices, dtype=np.int64, count=-1)

    sample_len = 0
    sample_lens = []
    batch = []
    batches = []
    for i in range(len(indices)):
        idx = indices[i]
        num_tokens = num_tokens_fn(idx)
        sample_lens.append(num_tokens)
        sample_len = max(sample_len, num_tokens)

        assert sample_len <= max_tokens, (
            "sentence at index {} of size {} exceeds max_tokens "
            "limit of {}!".format(idx, sample_len, max_tokens)
        )
        num_tokens = (len(batch) + 1) * sample_len

        if _is_batch_full(batch, num_tokens, max_tokens, max_sentences):
            mod_len = max(
                bsz_mult * (len(batch) // bsz_mult),
                len(batch) % bsz_mult,
            )
            batches.append(batch[:mod_len])
            batch = batch[mod_len:]
            sample_lens = sample_lens[mod_len:]
            sample_len = max(sample_lens) if len(sample_lens) > 0 else 0
        batch.append(idx)
    if len(batch) > 0:
        batches.append(batch)
    return batches

def unpack_dict_to_list(samples):
    samples_ = []
    bsz = samples.get('outputs').size(0)
    for i in range(bsz):
        res = {}
        for k, v in samples.items():
            try:
                res[k] = v[i]
            except:
                pass
        samples_.append(res)
    return samples_


def remove_padding(x, padding_idx=0):
    if x is None:
        return None
    assert len(x.shape) in [1, 2]
    if len(x.shape) == 2:  # [T, H]
        return x[np.abs(x).sum(-1) != padding_idx]
    elif len(x.shape) == 1:  # [T]
        return x[x != padding_idx]


class Timer:
    timer_map = {}

    def __init__(self, name, enable=False):
        if name not in Timer.timer_map:
            Timer.timer_map[name] = 0
        self.name = name
        self.enable = enable

    def __enter__(self):
        if self.enable:
            if torch.cuda.is_available():
                torch.cuda.synchronize()
            self.t = time.time()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if self.enable:
            if torch.cuda.is_available():
                torch.cuda.synchronize()
            Timer.timer_map[self.name] += time.time() - self.t
            if self.enable:
                print(f'[Timer] {self.name}: {Timer.timer_map[self.name]}')


def print_arch(model, model_name='model'):
    print(f"| {model_name} Arch: ", model)
    num_params(model, model_name=model_name)


def num_params(model, print_out=True, model_name="model"):
    parameters = filter(lambda p: p.requires_grad, model.parameters())
    parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000
    if print_out:
        print(f'| {model_name} Trainable Parameters: %.3fM' % parameters)
    return parameters


def get_encoding(file):
    with open(file, 'rb') as f:
        encoding = chardet.detect(f.read())['encoding']
    if encoding == 'GB2312':
        encoding = 'GB18030'
    return encoding