File size: 7,010 Bytes
64e7f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import os

import torch

from tasks.tts.dataset_utils import FastSpeechWordDataset
from tasks.tts.tts_utils import load_data_preprocessor
import numpy as np
from modules.FastDiff.module.util import compute_hyperparams_given_schedule, sampling_given_noise_schedule

import os

import torch

from modules.FastDiff.module.FastDiff_model import FastDiff
from utils.ckpt_utils import load_ckpt
from utils.hparams import set_hparams


class BaseTTSInfer:
    def __init__(self, hparams, device=None):
        if device is None:
            device = 'cuda' if torch.cuda.is_available() else 'cpu'
        self.hparams = hparams
        self.device = device
        self.data_dir = hparams['binary_data_dir']
        self.preprocessor, self.preprocess_args = load_data_preprocessor()
        self.ph_encoder = self.preprocessor.load_dict(self.data_dir)
        self.spk_map = self.preprocessor.load_spk_map(self.data_dir)
        self.ds_cls = FastSpeechWordDataset
        self.model = self.build_model()
        self.model.eval()
        self.model.to(self.device)
        self.vocoder, self.diffusion_hyperparams, self.noise_schedule = self.build_vocoder()
        self.vocoder.eval()
        self.vocoder.to(self.device)

    def build_model(self):
        raise NotImplementedError

    def forward_model(self, inp):
        raise NotImplementedError

    def build_vocoder(self):
        base_dir = self.hparams['vocoder_ckpt']
        config_path = f'{base_dir}/config.yaml'
        config = set_hparams(config_path, global_hparams=False)
        vocoder = FastDiff(audio_channels=config['audio_channels'],
                 inner_channels=config['inner_channels'],
                 cond_channels=config['cond_channels'],
                 upsample_ratios=config['upsample_ratios'],
                 lvc_layers_each_block=config['lvc_layers_each_block'],
                 lvc_kernel_size=config['lvc_kernel_size'],
                 kpnet_hidden_channels=config['kpnet_hidden_channels'],
                 kpnet_conv_size=config['kpnet_conv_size'],
                 dropout=config['dropout'],
                 diffusion_step_embed_dim_in=config['diffusion_step_embed_dim_in'],
                 diffusion_step_embed_dim_mid=config['diffusion_step_embed_dim_mid'],
                 diffusion_step_embed_dim_out=config['diffusion_step_embed_dim_out'],
                 use_weight_norm=config['use_weight_norm'])
        load_ckpt(vocoder, base_dir, 'model')

        # Init hyperparameters by linear schedule
        noise_schedule = torch.linspace(float(config["beta_0"]), float(config["beta_T"]), int(config["T"]))
        diffusion_hyperparams = compute_hyperparams_given_schedule(noise_schedule)

        if config['noise_schedule'] != '':
            noise_schedule = config['noise_schedule']
            if isinstance(noise_schedule, list):
                noise_schedule = torch.FloatTensor(noise_schedule)
        else:
            # Select Schedule
            try:
                reverse_step = int(self.hparams.get('N'))
            except:
                print(
                    'Please specify $N (the number of revere iterations) in config file. Now denoise with 4 iterations.')
                reverse_step = 4
            if reverse_step == 1000:
                noise_schedule = torch.linspace(0.000001, 0.01, 1000)
            elif reverse_step == 200:
                noise_schedule = torch.linspace(0.0001, 0.02, 200)

            # Below are schedules derived by Noise Predictor.
            # We will release codes of noise predictor training process & noise scheduling process soon. Please Stay Tuned!
            elif reverse_step == 8:
                noise_schedule = [6.689325005027058e-07, 1.0033881153503899e-05, 0.00015496854030061513,
                                  0.002387222135439515, 0.035597629845142365, 0.3681158423423767, 0.4735414385795593,
                                  0.5]
            elif reverse_step == 6:
                noise_schedule = [1.7838445955931093e-06, 2.7984189728158526e-05, 0.00043231004383414984,
                                  0.006634317338466644, 0.09357017278671265, 0.6000000238418579]
            elif reverse_step == 4:
                noise_schedule = [3.2176e-04, 2.5743e-03, 2.5376e-02, 7.0414e-01]
            elif reverse_step == 3:
                noise_schedule = [9.0000e-05, 9.0000e-03, 6.0000e-01]
            else:
                raise NotImplementedError

        if isinstance(noise_schedule, list):
            noise_schedule = torch.FloatTensor(noise_schedule)

        return vocoder, diffusion_hyperparams, noise_schedule

    def run_vocoder(self, c):
        c = c.transpose(2, 1)
        audio_length = c.shape[-1] * self.hparams["hop_size"]
        y = sampling_given_noise_schedule(
            self.vocoder, (1, 1, audio_length), self.diffusion_hyperparams, self.noise_schedule, condition=c, ddim=False, return_sequence=False)
        return y

    def preprocess_input(self, inp):
        """
        :param inp: {'text': str, 'item_name': (str, optional), 'spk_name': (str, optional)}
        :return:
        """
        preprocessor, preprocess_args = self.preprocessor, self.preprocess_args
        text_raw = inp['text']
        item_name = inp.get('item_name', '<ITEM_NAME>')
        spk_name = inp.get('spk_name', 'SPK1')
        ph, txt = preprocessor.txt_to_ph(
            preprocessor.txt_processor, text_raw, preprocess_args)
        ph_token = self.ph_encoder.encode(ph)
        spk_id = self.spk_map[spk_name]
        item = {'item_name': item_name, 'text': txt, 'ph': ph, 'spk_id': spk_id, 'ph_token': ph_token}
        item['ph_len'] = len(item['ph_token'])
        return item

    def input_to_batch(self, item):
        item_names = [item['item_name']]
        text = [item['text']]
        ph = [item['ph']]
        txt_tokens = torch.LongTensor(item['ph_token'])[None, :].to(self.device)
        txt_lengths = torch.LongTensor([txt_tokens.shape[1]]).to(self.device)
        spk_ids = torch.LongTensor(item['spk_id'])[None, :].to(self.device)
        batch = {
            'item_name': item_names,
            'text': text,
            'ph': ph,
            'txt_tokens': txt_tokens,
            'txt_lengths': txt_lengths,
            'spk_ids': spk_ids,
        }
        return batch

    def postprocess_output(self, output):
        return output

    def infer_once(self, inp):
        inp = self.preprocess_input(inp)
        output = self.forward_model(inp)
        output = self.postprocess_output(output)
        return output

    @classmethod
    def example_run(cls):
        from utils.hparams import set_hparams
        from utils.hparams import hparams as hp
        from utils.audio import save_wav

        set_hparams()
        inp = {
            'text': hp['text']
        }
        infer_ins = cls(hp)
        out = infer_ins.infer_once(inp)
        os.makedirs('infer_out', exist_ok=True)
        save_wav(out, f'infer_out/{hp["text"]}.wav', hp['audio_sample_rate'])