Spaces:
Runtime error
Runtime error
File size: 5,604 Bytes
64e7f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
import glob
import re
import librosa
import torch
import yaml
from sklearn.preprocessing import StandardScaler
from torch import nn
from modules.parallel_wavegan.models import ParallelWaveGANGenerator
from modules.parallel_wavegan.utils import read_hdf5
from utils.hparams import hparams
from utils.pitch_utils import f0_to_coarse
from vocoders.base_vocoder import BaseVocoder, register_vocoder
import numpy as np
def load_pwg_model(config_path, checkpoint_path, stats_path):
# load config
with open(config_path) as f:
config = yaml.load(f, Loader=yaml.Loader)
# setup
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
model = ParallelWaveGANGenerator(**config["generator_params"])
ckpt_dict = torch.load(checkpoint_path, map_location="cpu")
if 'state_dict' not in ckpt_dict: # official vocoder
model.load_state_dict(torch.load(checkpoint_path, map_location="cpu")["model"]["generator"])
scaler = StandardScaler()
if config["format"] == "hdf5":
scaler.mean_ = read_hdf5(stats_path, "mean")
scaler.scale_ = read_hdf5(stats_path, "scale")
elif config["format"] == "npy":
scaler.mean_ = np.load(stats_path)[0]
scaler.scale_ = np.load(stats_path)[1]
else:
raise ValueError("support only hdf5 or npy format.")
else: # custom PWG vocoder
fake_task = nn.Module()
fake_task.model_gen = model
fake_task.load_state_dict(torch.load(checkpoint_path, map_location="cpu")["state_dict"], strict=False)
scaler = None
model.remove_weight_norm()
model = model.eval().to(device)
print(f"| Loaded model parameters from {checkpoint_path}.")
print(f"| PWG device: {device}.")
return model, scaler, config, device
@register_vocoder
class PWG(BaseVocoder):
def __init__(self):
if hparams['vocoder_ckpt'] == '': # load LJSpeech PWG pretrained model
base_dir = 'wavegan_pretrained'
ckpts = glob.glob(f'{base_dir}/checkpoint-*steps.pkl')
ckpt = sorted(ckpts, key=
lambda x: int(re.findall(f'{base_dir}/checkpoint-(\d+)steps.pkl', x)[0]))[-1]
config_path = f'{base_dir}/config.yaml'
print('| load PWG: ', ckpt)
self.model, self.scaler, self.config, self.device = load_pwg_model(
config_path=config_path,
checkpoint_path=ckpt,
stats_path=f'{base_dir}/stats.h5',
)
else:
base_dir = hparams['vocoder_ckpt']
print(base_dir)
config_path = f'{base_dir}/config.yaml'
ckpt = sorted(glob.glob(f'{base_dir}/model_ckpt_steps_*.ckpt'), key=
lambda x: int(re.findall(f'{base_dir}/model_ckpt_steps_(\d+).ckpt', x)[0]))[-1]
print('| load PWG: ', ckpt)
self.scaler = None
self.model, _, self.config, self.device = load_pwg_model(
config_path=config_path,
checkpoint_path=ckpt,
stats_path=f'{base_dir}/stats.h5',
)
def spec2wav(self, mel, **kwargs):
# start generation
config = self.config
device = self.device
pad_size = (config["generator_params"]["aux_context_window"],
config["generator_params"]["aux_context_window"])
c = mel
if self.scaler is not None:
c = self.scaler.transform(c)
with torch.no_grad():
z = torch.randn(1, 1, c.shape[0] * config["hop_size"]).to(device)
c = np.pad(c, (pad_size, (0, 0)), "edge")
c = torch.FloatTensor(c).unsqueeze(0).transpose(2, 1).to(device)
p = kwargs.get('f0')
if p is not None:
p = f0_to_coarse(p)
p = np.pad(p, (pad_size,), "edge")
p = torch.LongTensor(p[None, :]).to(device)
y = self.model(z, c, p).view(-1)
wav_out = y.cpu().numpy()
return wav_out
@staticmethod
def wav2spec(wav_fn, return_linear=False):
from data_gen.tts.data_gen_utils import process_utterance
res = process_utterance(
wav_fn, fft_size=hparams['fft_size'],
hop_size=hparams['hop_size'],
win_length=hparams['win_size'],
num_mels=hparams['audio_num_mel_bins'],
fmin=hparams['fmin'],
fmax=hparams['fmax'],
sample_rate=hparams['audio_sample_rate'],
loud_norm=hparams['loud_norm'],
min_level_db=hparams['min_level_db'],
return_linear=return_linear, vocoder='pwg', eps=float(hparams.get('wav2spec_eps', 1e-10)))
if return_linear:
return res[0], res[1].T, res[2].T # [T, 80], [T, n_fft]
else:
return res[0], res[1].T
@staticmethod
def wav2mfcc(wav_fn):
fft_size = hparams['fft_size']
hop_size = hparams['hop_size']
win_length = hparams['win_size']
sample_rate = hparams['audio_sample_rate']
wav, _ = librosa.core.load(wav_fn, sr=sample_rate)
mfcc = librosa.feature.mfcc(y=wav, sr=sample_rate, n_mfcc=13,
n_fft=fft_size, hop_length=hop_size,
win_length=win_length, pad_mode="constant", power=1.0)
mfcc_delta = librosa.feature.delta(mfcc, order=1)
mfcc_delta_delta = librosa.feature.delta(mfcc, order=2)
mfcc = np.concatenate([mfcc, mfcc_delta, mfcc_delta_delta]).T
return mfcc
|