File size: 14,364 Bytes
64e7f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import math
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F

from torch.nn import Conv1d

LRELU_SLOPE = 0.1



def get_sinusoid_encoding_table(n_position, d_hid, padding_idx=None):
    ''' Sinusoid position encoding table '''

    def cal_angle(position, hid_idx):
        return position / np.power(10000, 2 * (hid_idx // 2) / d_hid)

    def get_posi_angle_vec(position):
        return [cal_angle(position, hid_j) for hid_j in range(d_hid)]

    sinusoid_table = np.array([get_posi_angle_vec(pos_i)
                               for pos_i in range(n_position)])

    sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2])  # dim 2i
    sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2])  # dim 2i+1

    if padding_idx is not None:
        # zero vector for padding dimension
        sinusoid_table[padding_idx] = 0.

    return torch.FloatTensor(sinusoid_table)


def overlap_and_add(signal, frame_step):
    """Reconstructs a signal from a framed representation.

    Adds potentially overlapping frames of a signal with shape
    `[..., frames, frame_length]`, offsetting subsequent frames by `frame_step`.
    The resulting tensor has shape `[..., output_size]` where

        output_size = (frames - 1) * frame_step + frame_length

    Args:
        signal: A [..., frames, frame_length] Tensor. All dimensions may be unknown, and rank must be at least 2.
        frame_step: An integer denoting overlap offsets. Must be less than or equal to frame_length.

    Returns:
        A Tensor with shape [..., output_size] containing the overlap-added frames of signal's inner-most two dimensions.
        output_size = (frames - 1) * frame_step + frame_length

    Based on https://github.com/tensorflow/tensorflow/blob/r1.12/tensorflow/contrib/signal/python/ops/reconstruction_ops.py
    """
    outer_dimensions = signal.size()[:-2]
    frames, frame_length = signal.size()[-2:]

    # gcd=Greatest Common Divisor
    subframe_length = math.gcd(frame_length, frame_step)
    subframe_step = frame_step // subframe_length
    subframes_per_frame = frame_length // subframe_length
    output_size = frame_step * (frames - 1) + frame_length
    output_subframes = output_size // subframe_length

    subframe_signal = signal.view(*outer_dimensions, -1, subframe_length)

    frame = torch.arange(0, output_subframes).unfold(0, subframes_per_frame, subframe_step)
    frame = signal.new_tensor(frame).long()  # signal may in GPU or CPU
    frame = frame.contiguous().view(-1)

    result = signal.new_zeros(*outer_dimensions, output_subframes, subframe_length)
    device_of_result = result.device
    result.index_add_(-2, frame.to(device_of_result), subframe_signal)
    result = result.view(*outer_dimensions, -1)
    return result


class LastLayer(nn.Module):
    def __init__(self, in_channels, out_channels,
                 nonlinear_activation, nonlinear_activation_params,
                 pad, kernel_size, pad_params, bias):
        super(LastLayer, self).__init__()
        self.activation = getattr(torch.nn, nonlinear_activation)(**nonlinear_activation_params)
        self.pad = getattr(torch.nn, pad)((kernel_size - 1) // 2, **pad_params)
        self.conv = torch.nn.Conv1d(in_channels, out_channels, kernel_size, bias=bias)

    def forward(self, x):
        x = self.activation(x)
        x = self.pad(x)
        x = self.conv(x)
        return x


class WeightConv1d(Conv1d):
    """Conv1d module with customized initialization."""

    def __init__(self, *args, **kwargs):
        """Initialize Conv1d module."""
        super(Conv1d, self).__init__(*args, **kwargs)

    def reset_parameters(self):
        """Reset parameters."""
        torch.nn.init.kaiming_normal_(self.weight, nonlinearity="relu")
        if self.bias is not None:
            torch.nn.init.constant_(self.bias, 0.0)


class Conv1d1x1(Conv1d):
    """1x1 Conv1d with customized initialization."""

    def __init__(self, in_channels, out_channels, bias):
        """Initialize 1x1 Conv1d module."""
        super(Conv1d1x1, self).__init__(in_channels, out_channels,
                                        kernel_size=1, padding=0,
                                        dilation=1, bias=bias)

class DiffusionDBlock(nn.Module):
  def __init__(self, input_size, hidden_size, factor):
    super().__init__()
    self.factor = factor
    self.residual_dense = Conv1d(input_size, hidden_size, 1)
    self.conv = nn.ModuleList([
        Conv1d(input_size, hidden_size, 3, dilation=1, padding=1),
        Conv1d(hidden_size, hidden_size, 3, dilation=2, padding=2),
        Conv1d(hidden_size, hidden_size, 3, dilation=4, padding=4),
    ])

  def forward(self, x):
    size = x.shape[-1] // self.factor

    residual = self.residual_dense(x)
    residual = F.interpolate(residual, size=size)

    x = F.interpolate(x, size=size)
    for layer in self.conv:
      x = F.leaky_relu(x, 0.2)
      x = layer(x)

    return x + residual


class TimeAware_LVCBlock(torch.nn.Module):
    ''' time-aware location-variable convolutions
    '''
    def __init__(self,
                 in_channels,
                 cond_channels,
                 upsample_ratio,
                 conv_layers=4,
                 conv_kernel_size=3,
                 cond_hop_length=256,
                 kpnet_hidden_channels=64,
                 kpnet_conv_size=3,
                 kpnet_dropout=0.0,
                 noise_scale_embed_dim_out=512
                 ):
        super().__init__()

        self.cond_hop_length = cond_hop_length
        self.conv_layers = conv_layers
        self.conv_kernel_size = conv_kernel_size
        self.convs = torch.nn.ModuleList()

        self.upsample = torch.nn.ConvTranspose1d(in_channels, in_channels,
                                    kernel_size=upsample_ratio*2, stride=upsample_ratio,
                                    padding=upsample_ratio // 2 + upsample_ratio % 2,
                                    output_padding=upsample_ratio % 2)


        self.kernel_predictor = KernelPredictor(
            cond_channels=cond_channels,
            conv_in_channels=in_channels,
            conv_out_channels=2 * in_channels,
            conv_layers=conv_layers,
            conv_kernel_size=conv_kernel_size,
            kpnet_hidden_channels=kpnet_hidden_channels,
            kpnet_conv_size=kpnet_conv_size,
            kpnet_dropout=kpnet_dropout
        )

        # the layer-specific fc for noise scale embedding
        self.fc_t = torch.nn.Linear(noise_scale_embed_dim_out, cond_channels)

        for i in range(conv_layers):
            padding = (3 ** i) * int((conv_kernel_size - 1) / 2)
            conv = torch.nn.Conv1d(in_channels, in_channels, kernel_size=conv_kernel_size, padding=padding, dilation=3 ** i)

            self.convs.append(conv)


    def forward(self, data):
        ''' forward propagation of the time-aware location-variable convolutions.
        Args:
            x (Tensor): the input sequence (batch, in_channels, in_length)
            c (Tensor): the conditioning sequence (batch, cond_channels, cond_length)

        Returns:
            Tensor: the output sequence (batch, in_channels, in_length)
        '''
        x, audio_down, c, noise_embedding = data
        batch, in_channels, in_length = x.shape

        noise = (self.fc_t(noise_embedding)).unsqueeze(-1)  # (B, 80)
        condition = c + noise  # (B, 80, T)
        kernels, bias = self.kernel_predictor(condition)
        x = F.leaky_relu(x, 0.2)
        x = self.upsample(x)

        for i in range(self.conv_layers):
            x += audio_down
            y = F.leaky_relu(x, 0.2)
            y = self.convs[i](y)
            y = F.leaky_relu(y, 0.2)

            k = kernels[:, i, :, :, :, :]
            b = bias[:, i, :, :]
            y = self.location_variable_convolution(y, k, b, 1, self.cond_hop_length)
            x = x + torch.sigmoid(y[:, :in_channels, :]) * torch.tanh(y[:, in_channels:, :])
        return x

    def location_variable_convolution(self, x, kernel, bias, dilation, hop_size):
        ''' perform location-variable convolution operation on the input sequence (x) using the local convolution kernl.
        Time: 414 μs ± 309 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each), test on NVIDIA V100.
        Args:
            x (Tensor): the input sequence (batch, in_channels, in_length).
            kernel (Tensor): the local convolution kernel (batch, in_channel, out_channels, kernel_size, kernel_length)
            bias (Tensor): the bias for the local convolution (batch, out_channels, kernel_length)
            dilation (int): the dilation of convolution.
            hop_size (int): the hop_size of the conditioning sequence.
        Returns:
            (Tensor): the output sequence after performing local convolution. (batch, out_channels, in_length).
        '''
        batch, in_channels, in_length = x.shape
        batch, in_channels, out_channels, kernel_size, kernel_length = kernel.shape


        assert in_length == (kernel_length * hop_size), "length of (x, kernel) is not matched"

        padding = dilation * int((kernel_size - 1) / 2)
        x = F.pad(x, (padding, padding), 'constant', 0)  # (batch, in_channels, in_length + 2*padding)
        x = x.unfold(2, hop_size + 2 * padding, hop_size)  # (batch, in_channels, kernel_length, hop_size + 2*padding)

        if hop_size < dilation:
            x = F.pad(x, (0, dilation), 'constant', 0)
        x = x.unfold(3, dilation,
                     dilation)  # (batch, in_channels, kernel_length, (hop_size + 2*padding)/dilation, dilation)
        x = x[:, :, :, :, :hop_size]
        x = x.transpose(3, 4)  # (batch, in_channels, kernel_length, dilation, (hop_size + 2*padding)/dilation)
        x = x.unfold(4, kernel_size, 1)  # (batch, in_channels, kernel_length, dilation, _, kernel_size)

        o = torch.einsum('bildsk,biokl->bolsd', x, kernel)
        o = o + bias.unsqueeze(-1).unsqueeze(-1)
        o = o.contiguous().view(batch, out_channels, -1)
        return o



class KernelPredictor(torch.nn.Module):
    ''' Kernel predictor for the time-aware location-variable convolutions
    '''

    def __init__(self,
                 cond_channels,
                 conv_in_channels,
                 conv_out_channels,
                 conv_layers,
                 conv_kernel_size=3,
                 kpnet_hidden_channels=64,
                 kpnet_conv_size=3,
                 kpnet_dropout=0.0,
                 kpnet_nonlinear_activation="LeakyReLU",
                 kpnet_nonlinear_activation_params={"negative_slope": 0.1}
                 ):
        '''
        Args:
            cond_channels (int): number of channel for the conditioning sequence,
            conv_in_channels (int): number of channel for the input sequence,
            conv_out_channels (int): number of channel for the output sequence,
            conv_layers (int):
            kpnet_
        '''
        super().__init__()

        self.conv_in_channels = conv_in_channels
        self.conv_out_channels = conv_out_channels
        self.conv_kernel_size = conv_kernel_size
        self.conv_layers = conv_layers

        l_w = conv_in_channels * conv_out_channels * conv_kernel_size * conv_layers
        l_b = conv_out_channels * conv_layers

        padding = (kpnet_conv_size - 1) // 2
        self.input_conv = torch.nn.Sequential(
            torch.nn.Conv1d(cond_channels, kpnet_hidden_channels, 5, padding=(5 - 1) // 2, bias=True),
            getattr(torch.nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params),
        )

        self.residual_conv = torch.nn.Sequential(
            torch.nn.Dropout(kpnet_dropout),
            torch.nn.Conv1d(kpnet_hidden_channels, kpnet_hidden_channels, kpnet_conv_size, padding=padding, bias=True),
            getattr(torch.nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params),
            torch.nn.Conv1d(kpnet_hidden_channels, kpnet_hidden_channels, kpnet_conv_size, padding=padding, bias=True),
            getattr(torch.nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params),
            torch.nn.Dropout(kpnet_dropout),
            torch.nn.Conv1d(kpnet_hidden_channels, kpnet_hidden_channels, kpnet_conv_size, padding=padding, bias=True),
            getattr(torch.nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params),
            torch.nn.Conv1d(kpnet_hidden_channels, kpnet_hidden_channels, kpnet_conv_size, padding=padding, bias=True),
            getattr(torch.nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params),
            torch.nn.Dropout(kpnet_dropout),
            torch.nn.Conv1d(kpnet_hidden_channels, kpnet_hidden_channels, kpnet_conv_size, padding=padding, bias=True),
            getattr(torch.nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params),
            torch.nn.Conv1d(kpnet_hidden_channels, kpnet_hidden_channels, kpnet_conv_size, padding=padding, bias=True),
            getattr(torch.nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params),
        )

        self.kernel_conv = torch.nn.Conv1d(kpnet_hidden_channels, l_w, kpnet_conv_size,
                                           padding=padding, bias=True)
        self.bias_conv = torch.nn.Conv1d(kpnet_hidden_channels, l_b, kpnet_conv_size, padding=padding,
                                         bias=True)

    def forward(self, c):
        '''
        Args:
            c (Tensor): the conditioning sequence (batch, cond_channels, cond_length)
        Returns:
        '''
        batch, cond_channels, cond_length = c.shape

        c = self.input_conv(c)
        c = c + self.residual_conv(c)
        k = self.kernel_conv(c)
        b = self.bias_conv(c)

        kernels = k.contiguous().view(batch,
                                      self.conv_layers,
                                      self.conv_in_channels,
                                      self.conv_out_channels,
                                      self.conv_kernel_size,
                                      cond_length)
        bias = b.contiguous().view(batch,
                                   self.conv_layers,
                                   self.conv_out_channels,
                                   cond_length)
        return kernels, bias