File size: 4,425 Bytes
64e7f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# -*- coding: utf-8 -*-

"""Residual block module in WaveNet.

This code is modified from https://github.com/r9y9/wavenet_vocoder.

"""

import math

import torch
import torch.nn.functional as F


class Conv1d(torch.nn.Conv1d):
    """Conv1d module with customized initialization."""

    def __init__(self, *args, **kwargs):
        """Initialize Conv1d module."""
        super(Conv1d, self).__init__(*args, **kwargs)

    def reset_parameters(self):
        """Reset parameters."""
        torch.nn.init.kaiming_normal_(self.weight, nonlinearity="relu")
        if self.bias is not None:
            torch.nn.init.constant_(self.bias, 0.0)


class Conv1d1x1(Conv1d):
    """1x1 Conv1d with customized initialization."""

    def __init__(self, in_channels, out_channels, bias):
        """Initialize 1x1 Conv1d module."""
        super(Conv1d1x1, self).__init__(in_channels, out_channels,
                                        kernel_size=1, padding=0,
                                        dilation=1, bias=bias)


class ResidualBlock(torch.nn.Module):
    """Residual block module in WaveNet."""

    def __init__(self,
                 kernel_size=3,
                 residual_channels=64,
                 gate_channels=128,
                 skip_channels=64,
                 aux_channels=80,
                 dropout=0.0,
                 dilation=1,
                 bias=True,
                 use_causal_conv=False
                 ):
        """Initialize ResidualBlock module.

        Args:
            kernel_size (int): Kernel size of dilation convolution layer.
            residual_channels (int): Number of channels for residual connection.
            skip_channels (int): Number of channels for skip connection.
            aux_channels (int): Local conditioning channels i.e. auxiliary input dimension.
            dropout (float): Dropout probability.
            dilation (int): Dilation factor.
            bias (bool): Whether to add bias parameter in convolution layers.
            use_causal_conv (bool): Whether to use use_causal_conv or non-use_causal_conv convolution.

        """
        super(ResidualBlock, self).__init__()
        self.dropout = dropout
        # no future time stamps available
        if use_causal_conv:
            padding = (kernel_size - 1) * dilation
        else:
            assert (kernel_size - 1) % 2 == 0, "Not support even number kernel size."
            padding = (kernel_size - 1) // 2 * dilation
        self.use_causal_conv = use_causal_conv

        # dilation conv
        self.conv = Conv1d(residual_channels, gate_channels, kernel_size,
                           padding=padding, dilation=dilation, bias=bias)

        # local conditioning
        if aux_channels > 0:
            self.conv1x1_aux = Conv1d1x1(aux_channels, gate_channels, bias=False)
        else:
            self.conv1x1_aux = None

        # conv output is split into two groups
        gate_out_channels = gate_channels // 2
        self.conv1x1_out = Conv1d1x1(gate_out_channels, residual_channels, bias=bias)
        self.conv1x1_skip = Conv1d1x1(gate_out_channels, skip_channels, bias=bias)

    def forward(self, x, c):
        """Calculate forward propagation.

        Args:
            x (Tensor): Input tensor (B, residual_channels, T).
            c (Tensor): Local conditioning auxiliary tensor (B, aux_channels, T).

        Returns:
            Tensor: Output tensor for residual connection (B, residual_channels, T).
            Tensor: Output tensor for skip connection (B, skip_channels, T).

        """
        residual = x
        x = F.dropout(x, p=self.dropout, training=self.training)
        x = self.conv(x)

        # remove future time steps if use_causal_conv conv
        x = x[:, :, :residual.size(-1)] if self.use_causal_conv else x

        # split into two part for gated activation
        splitdim = 1
        xa, xb = x.split(x.size(splitdim) // 2, dim=splitdim)

        # local conditioning
        if c is not None:
            assert self.conv1x1_aux is not None
            c = self.conv1x1_aux(c)
            ca, cb = c.split(c.size(splitdim) // 2, dim=splitdim)
            xa, xb = xa + ca, xb + cb

        x = torch.tanh(xa) * torch.sigmoid(xb)

        # for skip connection
        s = self.conv1x1_skip(x)

        # for residual connection
        x = (self.conv1x1_out(x) + residual) * math.sqrt(0.5)

        return x, s