File size: 16,475 Bytes
64e7f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
# -*- coding: utf-8 -*-

# Copyright 2019 Tomoki Hayashi
#  MIT License (https://opensource.org/licenses/MIT)

"""Parallel WaveGAN Modules."""

import logging
import math

import torch
from torch import nn

from modules.parallel_wavegan.layers import Conv1d
from modules.parallel_wavegan.layers import Conv1d1x1
from modules.parallel_wavegan.layers import ResidualBlock
from modules.parallel_wavegan.layers import upsample
from modules.parallel_wavegan import models


class ParallelWaveGANGenerator(torch.nn.Module):
    """Parallel WaveGAN Generator module."""

    def __init__(self,
                 in_channels=1,
                 out_channels=1,
                 kernel_size=3,
                 layers=30,
                 stacks=3,
                 residual_channels=64,
                 gate_channels=128,
                 skip_channels=64,
                 aux_channels=80,
                 aux_context_window=2,
                 dropout=0.0,
                 bias=True,
                 use_weight_norm=True,
                 use_causal_conv=False,
                 upsample_conditional_features=True,
                 upsample_net="ConvInUpsampleNetwork",
                 upsample_params={"upsample_scales": [4, 4, 4, 4]},
                 use_pitch_embed=False,
                 ):
        """Initialize Parallel WaveGAN Generator module.

        Args:
            in_channels (int): Number of input channels.
            out_channels (int): Number of output channels.
            kernel_size (int): Kernel size of dilated convolution.
            layers (int): Number of residual block layers.
            stacks (int): Number of stacks i.e., dilation cycles.
            residual_channels (int): Number of channels in residual conv.
            gate_channels (int):  Number of channels in gated conv.
            skip_channels (int): Number of channels in skip conv.
            aux_channels (int): Number of channels for auxiliary feature conv.
            aux_context_window (int): Context window size for auxiliary feature.
            dropout (float): Dropout rate. 0.0 means no dropout applied.
            bias (bool): Whether to use bias parameter in conv layer.
            use_weight_norm (bool): Whether to use weight norm.
                If set to true, it will be applied to all of the conv layers.
            use_causal_conv (bool): Whether to use causal structure.
            upsample_conditional_features (bool): Whether to use upsampling network.
            upsample_net (str): Upsampling network architecture.
            upsample_params (dict): Upsampling network parameters.

        """
        super(ParallelWaveGANGenerator, self).__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.aux_channels = aux_channels
        self.layers = layers
        self.stacks = stacks
        self.kernel_size = kernel_size

        # check the number of layers and stacks
        assert layers % stacks == 0
        layers_per_stack = layers // stacks

        # define first convolution
        self.first_conv = Conv1d1x1(in_channels, residual_channels, bias=True)

        # define conv + upsampling network
        if upsample_conditional_features:
            upsample_params.update({
                "use_causal_conv": use_causal_conv,
            })
            if upsample_net == "MelGANGenerator":
                assert aux_context_window == 0
                upsample_params.update({
                    "use_weight_norm": False,  # not to apply twice
                    "use_final_nonlinear_activation": False,
                })
                self.upsample_net = getattr(models, upsample_net)(**upsample_params)
            else:
                if upsample_net == "ConvInUpsampleNetwork":
                    upsample_params.update({
                        "aux_channels": aux_channels,
                        "aux_context_window": aux_context_window,
                    })
                self.upsample_net = getattr(upsample, upsample_net)(**upsample_params)
        else:
            self.upsample_net = None

        # define residual blocks
        self.conv_layers = torch.nn.ModuleList()
        for layer in range(layers):
            dilation = 2 ** (layer % layers_per_stack)
            conv = ResidualBlock(
                kernel_size=kernel_size,
                residual_channels=residual_channels,
                gate_channels=gate_channels,
                skip_channels=skip_channels,
                aux_channels=aux_channels,
                dilation=dilation,
                dropout=dropout,
                bias=bias,
                use_causal_conv=use_causal_conv,
            )
            self.conv_layers += [conv]

        # define output layers
        self.last_conv_layers = torch.nn.ModuleList([
            torch.nn.ReLU(inplace=True),
            Conv1d1x1(skip_channels, skip_channels, bias=True),
            torch.nn.ReLU(inplace=True),
            Conv1d1x1(skip_channels, out_channels, bias=True),
        ])

        self.use_pitch_embed = use_pitch_embed
        if use_pitch_embed:
            self.pitch_embed = nn.Embedding(300, aux_channels, 0)
            self.c_proj = nn.Linear(2 * aux_channels, aux_channels)

        # apply weight norm
        if use_weight_norm:
            self.apply_weight_norm()

    def forward(self, x, c=None, pitch=None, **kwargs):
        """Calculate forward propagation.

        Args:
            x (Tensor): Input noise signal (B, C_in, T).
            c (Tensor): Local conditioning auxiliary features (B, C ,T').
            pitch (Tensor): Local conditioning pitch (B, T').

        Returns:
            Tensor: Output tensor (B, C_out, T)

        """
        # perform upsampling
        if c is not None and self.upsample_net is not None:
            if self.use_pitch_embed:
                p = self.pitch_embed(pitch)
                c = self.c_proj(torch.cat([c.transpose(1, 2), p], -1)).transpose(1, 2)
            c = self.upsample_net(c)
            assert c.size(-1) == x.size(-1), (c.size(-1), x.size(-1))

        # encode to hidden representation
        x = self.first_conv(x)
        skips = 0
        for f in self.conv_layers:
            x, h = f(x, c)
            skips += h
        skips *= math.sqrt(1.0 / len(self.conv_layers))

        # apply final layers
        x = skips
        for f in self.last_conv_layers:
            x = f(x)

        return x

    def remove_weight_norm(self):
        """Remove weight normalization module from all of the layers."""
        def _remove_weight_norm(m):
            try:
                logging.debug(f"Weight norm is removed from {m}.")
                torch.nn.utils.remove_weight_norm(m)
            except ValueError:  # this module didn't have weight norm
                return

        self.apply(_remove_weight_norm)

    def apply_weight_norm(self):
        """Apply weight normalization module from all of the layers."""
        def _apply_weight_norm(m):
            if isinstance(m, torch.nn.Conv1d) or isinstance(m, torch.nn.Conv2d):
                torch.nn.utils.weight_norm(m)
                logging.debug(f"Weight norm is applied to {m}.")

        self.apply(_apply_weight_norm)

    @staticmethod
    def _get_receptive_field_size(layers, stacks, kernel_size,
                                  dilation=lambda x: 2 ** x):
        assert layers % stacks == 0
        layers_per_cycle = layers // stacks
        dilations = [dilation(i % layers_per_cycle) for i in range(layers)]
        return (kernel_size - 1) * sum(dilations) + 1

    @property
    def receptive_field_size(self):
        """Return receptive field size."""
        return self._get_receptive_field_size(self.layers, self.stacks, self.kernel_size)


class ParallelWaveGANDiscriminator(torch.nn.Module):
    """Parallel WaveGAN Discriminator module."""

    def __init__(self,
                 in_channels=1,
                 out_channels=1,
                 kernel_size=3,
                 layers=10,
                 conv_channels=64,
                 dilation_factor=1,
                 nonlinear_activation="LeakyReLU",
                 nonlinear_activation_params={"negative_slope": 0.2},
                 bias=True,
                 use_weight_norm=True,
                 ):
        """Initialize Parallel WaveGAN Discriminator module.

        Args:
            in_channels (int): Number of input channels.
            out_channels (int): Number of output channels.
            kernel_size (int): Number of output channels.
            layers (int): Number of conv layers.
            conv_channels (int): Number of chnn layers.
            dilation_factor (int): Dilation factor. For example, if dilation_factor = 2,
                the dilation will be 2, 4, 8, ..., and so on.
            nonlinear_activation (str): Nonlinear function after each conv.
            nonlinear_activation_params (dict): Nonlinear function parameters
            bias (bool): Whether to use bias parameter in conv.
            use_weight_norm (bool) Whether to use weight norm.
                If set to true, it will be applied to all of the conv layers.

        """
        super(ParallelWaveGANDiscriminator, self).__init__()
        assert (kernel_size - 1) % 2 == 0, "Not support even number kernel size."
        assert dilation_factor > 0, "Dilation factor must be > 0."
        self.conv_layers = torch.nn.ModuleList()
        conv_in_channels = in_channels
        for i in range(layers - 1):
            if i == 0:
                dilation = 1
            else:
                dilation = i if dilation_factor == 1 else dilation_factor ** i
                conv_in_channels = conv_channels
            padding = (kernel_size - 1) // 2 * dilation
            conv_layer = [
                Conv1d(conv_in_channels, conv_channels,
                       kernel_size=kernel_size, padding=padding,
                       dilation=dilation, bias=bias),
                getattr(torch.nn, nonlinear_activation)(inplace=True, **nonlinear_activation_params)
            ]
            self.conv_layers += conv_layer
        padding = (kernel_size - 1) // 2
        last_conv_layer = Conv1d(
            conv_in_channels, out_channels,
            kernel_size=kernel_size, padding=padding, bias=bias)
        self.conv_layers += [last_conv_layer]

        # apply weight norm
        if use_weight_norm:
            self.apply_weight_norm()

    def forward(self, x):
        """Calculate forward propagation.

        Args:
            x (Tensor): Input noise signal (B, 1, T).

        Returns:
            Tensor: Output tensor (B, 1, T)

        """
        for f in self.conv_layers:
            x = f(x)
        return x

    def apply_weight_norm(self):
        """Apply weight normalization module from all of the layers."""
        def _apply_weight_norm(m):
            if isinstance(m, torch.nn.Conv1d) or isinstance(m, torch.nn.Conv2d):
                torch.nn.utils.weight_norm(m)
                logging.debug(f"Weight norm is applied to {m}.")

        self.apply(_apply_weight_norm)

    def remove_weight_norm(self):
        """Remove weight normalization module from all of the layers."""
        def _remove_weight_norm(m):
            try:
                logging.debug(f"Weight norm is removed from {m}.")
                torch.nn.utils.remove_weight_norm(m)
            except ValueError:  # this module didn't have weight norm
                return

        self.apply(_remove_weight_norm)


class ResidualParallelWaveGANDiscriminator(torch.nn.Module):
    """Parallel WaveGAN Discriminator module."""

    def __init__(self,
                 in_channels=1,
                 out_channels=1,
                 kernel_size=3,
                 layers=30,
                 stacks=3,
                 residual_channels=64,
                 gate_channels=128,
                 skip_channels=64,
                 dropout=0.0,
                 bias=True,
                 use_weight_norm=True,
                 use_causal_conv=False,
                 nonlinear_activation="LeakyReLU",
                 nonlinear_activation_params={"negative_slope": 0.2},
                 ):
        """Initialize Parallel WaveGAN Discriminator module.

        Args:
            in_channels (int): Number of input channels.
            out_channels (int): Number of output channels.
            kernel_size (int): Kernel size of dilated convolution.
            layers (int): Number of residual block layers.
            stacks (int): Number of stacks i.e., dilation cycles.
            residual_channels (int): Number of channels in residual conv.
            gate_channels (int):  Number of channels in gated conv.
            skip_channels (int): Number of channels in skip conv.
            dropout (float): Dropout rate. 0.0 means no dropout applied.
            bias (bool): Whether to use bias parameter in conv.
            use_weight_norm (bool): Whether to use weight norm.
                If set to true, it will be applied to all of the conv layers.
            use_causal_conv (bool): Whether to use causal structure.
            nonlinear_activation_params (dict): Nonlinear function parameters

        """
        super(ResidualParallelWaveGANDiscriminator, self).__init__()
        assert (kernel_size - 1) % 2 == 0, "Not support even number kernel size."

        self.in_channels = in_channels
        self.out_channels = out_channels
        self.layers = layers
        self.stacks = stacks
        self.kernel_size = kernel_size

        # check the number of layers and stacks
        assert layers % stacks == 0
        layers_per_stack = layers // stacks

        # define first convolution
        self.first_conv = torch.nn.Sequential(
            Conv1d1x1(in_channels, residual_channels, bias=True),
            getattr(torch.nn, nonlinear_activation)(
                inplace=True, **nonlinear_activation_params),
        )

        # define residual blocks
        self.conv_layers = torch.nn.ModuleList()
        for layer in range(layers):
            dilation = 2 ** (layer % layers_per_stack)
            conv = ResidualBlock(
                kernel_size=kernel_size,
                residual_channels=residual_channels,
                gate_channels=gate_channels,
                skip_channels=skip_channels,
                aux_channels=-1,
                dilation=dilation,
                dropout=dropout,
                bias=bias,
                use_causal_conv=use_causal_conv,
            )
            self.conv_layers += [conv]

        # define output layers
        self.last_conv_layers = torch.nn.ModuleList([
            getattr(torch.nn, nonlinear_activation)(
                inplace=True, **nonlinear_activation_params),
            Conv1d1x1(skip_channels, skip_channels, bias=True),
            getattr(torch.nn, nonlinear_activation)(
                inplace=True, **nonlinear_activation_params),
            Conv1d1x1(skip_channels, out_channels, bias=True),
        ])

        # apply weight norm
        if use_weight_norm:
            self.apply_weight_norm()

    def forward(self, x):
        """Calculate forward propagation.

        Args:
            x (Tensor): Input noise signal (B, 1, T).

        Returns:
            Tensor: Output tensor (B, 1, T)

        """
        x = self.first_conv(x)

        skips = 0
        for f in self.conv_layers:
            x, h = f(x, None)
            skips += h
        skips *= math.sqrt(1.0 / len(self.conv_layers))

        # apply final layers
        x = skips
        for f in self.last_conv_layers:
            x = f(x)
        return x

    def apply_weight_norm(self):
        """Apply weight normalization module from all of the layers."""
        def _apply_weight_norm(m):
            if isinstance(m, torch.nn.Conv1d) or isinstance(m, torch.nn.Conv2d):
                torch.nn.utils.weight_norm(m)
                logging.debug(f"Weight norm is applied to {m}.")

        self.apply(_apply_weight_norm)

    def remove_weight_norm(self):
        """Remove weight normalization module from all of the layers."""
        def _remove_weight_norm(m):
            try:
                logging.debug(f"Weight norm is removed from {m}.")
                torch.nn.utils.remove_weight_norm(m)
            except ValueError:  # this module didn't have weight norm
                return

        self.apply(_remove_weight_norm)