Spaces:
Runtime error
Runtime error
File size: 12,161 Bytes
64e7f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
from itertools import chain
from torch.utils.data import ConcatDataset
from torch.utils.tensorboard import SummaryWriter
import subprocess
import traceback
from datetime import datetime
from functools import wraps
from utils.hparams import hparams
import random
import sys
import numpy as np
from utils.trainer import Trainer
from torch import nn
import torch.utils.data
import utils
import logging
import os
torch.multiprocessing.set_sharing_strategy(os.getenv('TORCH_SHARE_STRATEGY', 'file_system'))
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format=log_format, datefmt='%m/%d %I:%M:%S %p')
def data_loader(fn):
"""
Decorator to make any fx with this use the lazy property
:param fn:
:return:
"""
wraps(fn)
attr_name = '_lazy_' + fn.__name__
def _get_data_loader(self):
try:
value = getattr(self, attr_name)
except AttributeError:
try:
value = fn(self) # Lazy evaluation, done only once.
except AttributeError as e:
# Guard against AttributeError suppression. (Issue #142)
traceback.print_exc()
error = f'{fn.__name__}: An AttributeError was encountered: ' + str(e)
raise RuntimeError(error) from e
setattr(self, attr_name, value) # Memoize evaluation.
return value
return _get_data_loader
class BaseDataset(torch.utils.data.Dataset):
def __init__(self, shuffle):
super().__init__()
self.hparams = hparams
self.shuffle = shuffle
self.sort_by_len = hparams['sort_by_len']
self.sizes = None
@property
def _sizes(self):
return self.sizes
def __getitem__(self, index):
raise NotImplementedError
def collater(self, samples):
raise NotImplementedError
def __len__(self):
return len(self._sizes)
def num_tokens(self, index):
return self.size(index)
def size(self, index):
"""Return an example's size as a float or tuple. This value is used when
filtering a dataset with ``--max-positions``."""
return min(self._sizes[index], hparams['max_frames'])
def ordered_indices(self):
"""Return an ordered list of indices. Batches will be constructed based
on this order."""
if self.shuffle:
indices = np.random.permutation(len(self))
if self.sort_by_len:
indices = indices[np.argsort(np.array(self._sizes)[indices], kind='mergesort')]
else:
indices = np.arange(len(self))
return indices
@property
def num_workers(self):
return int(os.getenv('NUM_WORKERS', hparams['ds_workers']))
class BaseConcatDataset(ConcatDataset):
def collater(self, samples):
return self.datasets[0].collater(samples)
@property
def _sizes(self):
if not hasattr(self, 'sizes'):
self.sizes = list(chain.from_iterable([d._sizes for d in self.datasets]))
return self.sizes
def size(self, index):
return min(self._sizes[index], hparams['max_frames'])
def num_tokens(self, index):
return self.size(index)
def ordered_indices(self):
"""Return an ordered list of indices. Batches will be constructed based
on this order."""
if self.datasets[0].shuffle:
indices = np.random.permutation(len(self))
if self.datasets[0].sort_by_len:
indices = indices[np.argsort(np.array(self._sizes)[indices], kind='mergesort')]
else:
indices = np.arange(len(self))
return indices
@property
def num_workers(self):
return self.datasets[0].num_workers
class BaseTask(nn.Module):
def __init__(self, *args, **kwargs):
# dataset configs
super(BaseTask, self).__init__()
self.current_epoch = 0
self.global_step = 0
self.trainer = None
self.use_ddp = False
self.gradient_clip_norm = hparams['clip_grad_norm']
self.gradient_clip_val = hparams.get('clip_grad_value', 0)
self.model = None
self.training_losses_meter = None
self.logger: SummaryWriter = None
######################
# build model, dataloaders, optimizer, scheduler and tensorboard
######################
def build_model(self):
raise NotImplementedError
@data_loader
def train_dataloader(self):
raise NotImplementedError
@data_loader
def test_dataloader(self):
raise NotImplementedError
@data_loader
def val_dataloader(self):
raise NotImplementedError
def build_scheduler(self, optimizer):
return None
def build_optimizer(self, model):
raise NotImplementedError
def configure_optimizers(self):
optm = self.build_optimizer(self.model)
self.scheduler = self.build_scheduler(optm)
if isinstance(optm, (list, tuple)):
return optm
return [optm]
def build_tensorboard(self, save_dir, name, version, **kwargs):
root_dir = os.path.join(save_dir, name)
os.makedirs(root_dir, exist_ok=True)
log_dir = os.path.join(root_dir, "version_" + str(version))
self.logger = SummaryWriter(log_dir=log_dir, **kwargs)
######################
# training
######################
def on_train_start(self):
pass
def on_epoch_start(self):
self.training_losses_meter = {'total_loss': utils.AvgrageMeter()}
def _training_step(self, sample, batch_idx, optimizer_idx):
"""
:param sample:
:param batch_idx:
:return: total loss: torch.Tensor, loss_log: dict
"""
raise NotImplementedError
def training_step(self, sample, batch_idx, optimizer_idx=-1):
"""
:param sample:
:param batch_idx:
:param optimizer_idx:
:return: {'loss': torch.Tensor, 'progress_bar': dict, 'tb_log': dict}
"""
loss_ret = self._training_step(sample, batch_idx, optimizer_idx)
if loss_ret is None:
return {'loss': None}
total_loss, log_outputs = loss_ret
log_outputs = utils.tensors_to_scalars(log_outputs)
for k, v in log_outputs.items():
if k not in self.training_losses_meter:
self.training_losses_meter[k] = utils.AvgrageMeter()
if not np.isnan(v):
self.training_losses_meter[k].update(v)
self.training_losses_meter['total_loss'].update(total_loss.item())
if optimizer_idx >= 0:
log_outputs[f'lr_{optimizer_idx}'] = self.trainer.optimizers[optimizer_idx].param_groups[0]['lr']
progress_bar_log = log_outputs
tb_log = {f'tr/{k}': v for k, v in log_outputs.items()}
return {
'loss': total_loss,
'progress_bar': progress_bar_log,
'tb_log': tb_log
}
def on_before_optimization(self, opt_idx):
if self.gradient_clip_norm > 0:
torch.nn.utils.clip_grad_norm_(self.parameters(), self.gradient_clip_norm)
if self.gradient_clip_val > 0:
torch.nn.utils.clip_grad_value_(self.parameters(), self.gradient_clip_val)
def on_after_optimization(self, epoch, batch_idx, optimizer, optimizer_idx):
if self.scheduler is not None:
self.scheduler.step(self.global_step // hparams['accumulate_grad_batches'])
def on_epoch_end(self):
loss_outputs = {k: round(v.avg, 4) for k, v in self.training_losses_meter.items()}
print(f"Epoch {self.current_epoch} ended. Steps: {self.global_step}. {loss_outputs}")
def on_train_end(self):
pass
######################
# validation
######################
def validation_step(self, sample, batch_idx):
"""
:param sample:
:param batch_idx:
:return: output: {"losses": {...}, "total_loss": float, ...} or (total loss: torch.Tensor, loss_log: dict)
"""
raise NotImplementedError
def validation_end(self, outputs):
"""
:param outputs:
:return: loss_output: dict
"""
all_losses_meter = {'total_loss': utils.AvgrageMeter()}
for output in outputs:
if len(output) == 0 or output is None:
continue
if isinstance(output, dict):
assert 'losses' in output, 'Key "losses" should exist in validation output.'
n = output.pop('nsamples', 1)
losses = utils.tensors_to_scalars(output['losses'])
total_loss = output.get('total_loss', sum(losses.values()))
else:
assert len(output) == 2, 'Validation output should only consist of two elements: (total_loss, losses)'
n = 1
total_loss, losses = output
losses = utils.tensors_to_scalars(losses)
if isinstance(total_loss, torch.Tensor):
total_loss = total_loss.item()
for k, v in losses.items():
if k not in all_losses_meter:
all_losses_meter[k] = utils.AvgrageMeter()
all_losses_meter[k].update(v, n)
all_losses_meter['total_loss'].update(total_loss, n)
loss_output = {k: round(v.avg, 4) for k, v in all_losses_meter.items()}
print(f"| Valid results: {loss_output}")
return {
'tb_log': {f'val/{k}': v for k, v in loss_output.items()},
'val_loss': loss_output['total_loss']
}
######################
# testing
######################
def test_start(self):
pass
def test_step(self, sample, batch_idx):
return self.validation_step(sample, batch_idx)
def test_end(self, outputs):
return self.validation_end(outputs)
######################
# utils
######################
def load_ckpt(self, ckpt_base_dir, current_model_name=None, model_name='model', force=True, strict=True):
if current_model_name is None:
current_model_name = model_name
utils.load_ckpt(self.__getattr__(current_model_name), ckpt_base_dir, current_model_name, force, strict)
######################
# start training/testing
######################
@classmethod
def start(cls):
os.environ['MASTER_PORT'] = str(random.randint(15000, 30000))
random.seed(hparams['seed'])
np.random.seed(hparams['seed'])
work_dir = hparams['work_dir']
trainer = Trainer(
work_dir=work_dir,
val_check_interval=hparams['val_check_interval'],
tb_log_interval=hparams['tb_log_interval'],
max_updates=hparams['max_updates'],
num_sanity_val_steps=hparams['num_sanity_val_steps'] if not hparams['validate'] else 10000,
accumulate_grad_batches=hparams['accumulate_grad_batches'],
print_nan_grads=hparams['print_nan_grads'],
resume_from_checkpoint=hparams.get('resume_from_checkpoint', 0),
amp=hparams['amp'],
# save ckpt
monitor_key=hparams['valid_monitor_key'],
monitor_mode=hparams['valid_monitor_mode'],
num_ckpt_keep=hparams['num_ckpt_keep'],
save_best=hparams['save_best'],
seed=hparams['seed'],
debug=hparams['debug']
)
if not hparams['inference']: # train
if len(hparams['save_codes']) > 0:
t = datetime.now().strftime('%Y%m%d%H%M%S')
code_dir = f'{work_dir}/codes/{t}'
subprocess.check_call(f'mkdir -p "{code_dir}"', shell=True)
for c in hparams['save_codes']:
if os.path.exists(c):
subprocess.check_call(f'rsync -av --exclude=__pycache__ "{c}" "{code_dir}/"', shell=True)
print(f"| Copied codes to {code_dir}.")
trainer.fit(cls)
else:
trainer.test(cls)
def on_keyboard_interrupt(self):
pass
|