File size: 12,161 Bytes
64e7f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
from itertools import chain

from torch.utils.data import ConcatDataset
from torch.utils.tensorboard import SummaryWriter
import subprocess
import traceback
from datetime import datetime
from functools import wraps
from utils.hparams import hparams
import random
import sys
import numpy as np
from utils.trainer import Trainer
from torch import nn
import torch.utils.data
import utils
import logging
import os

torch.multiprocessing.set_sharing_strategy(os.getenv('TORCH_SHARE_STRATEGY', 'file_system'))

log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
                    format=log_format, datefmt='%m/%d %I:%M:%S %p')


def data_loader(fn):
    """
    Decorator to make any fx with this use the lazy property
    :param fn:
    :return:
    """

    wraps(fn)
    attr_name = '_lazy_' + fn.__name__

    def _get_data_loader(self):
        try:
            value = getattr(self, attr_name)
        except AttributeError:
            try:
                value = fn(self)  # Lazy evaluation, done only once.
            except AttributeError as e:
                # Guard against AttributeError suppression. (Issue #142)
                traceback.print_exc()
                error = f'{fn.__name__}: An AttributeError was encountered: ' + str(e)
                raise RuntimeError(error) from e
            setattr(self, attr_name, value)  # Memoize evaluation.
        return value

    return _get_data_loader


class BaseDataset(torch.utils.data.Dataset):
    def __init__(self, shuffle):
        super().__init__()
        self.hparams = hparams
        self.shuffle = shuffle
        self.sort_by_len = hparams['sort_by_len']
        self.sizes = None

    @property
    def _sizes(self):
        return self.sizes

    def __getitem__(self, index):
        raise NotImplementedError

    def collater(self, samples):
        raise NotImplementedError

    def __len__(self):
        return len(self._sizes)

    def num_tokens(self, index):
        return self.size(index)

    def size(self, index):
        """Return an example's size as a float or tuple. This value is used when
        filtering a dataset with ``--max-positions``."""
        return min(self._sizes[index], hparams['max_frames'])

    def ordered_indices(self):
        """Return an ordered list of indices. Batches will be constructed based
        on this order."""
        if self.shuffle:
            indices = np.random.permutation(len(self))
            if self.sort_by_len:
                indices = indices[np.argsort(np.array(self._sizes)[indices], kind='mergesort')]
        else:
            indices = np.arange(len(self))
        return indices

    @property
    def num_workers(self):
        return int(os.getenv('NUM_WORKERS', hparams['ds_workers']))


class BaseConcatDataset(ConcatDataset):
    def collater(self, samples):
        return self.datasets[0].collater(samples)

    @property
    def _sizes(self):
        if not hasattr(self, 'sizes'):
            self.sizes = list(chain.from_iterable([d._sizes for d in self.datasets]))
        return self.sizes

    def size(self, index):
        return min(self._sizes[index], hparams['max_frames'])

    def num_tokens(self, index):
        return self.size(index)

    def ordered_indices(self):
        """Return an ordered list of indices. Batches will be constructed based
        on this order."""
        if self.datasets[0].shuffle:
            indices = np.random.permutation(len(self))
            if self.datasets[0].sort_by_len:
                indices = indices[np.argsort(np.array(self._sizes)[indices], kind='mergesort')]
        else:
            indices = np.arange(len(self))
        return indices

    @property
    def num_workers(self):
        return self.datasets[0].num_workers


class BaseTask(nn.Module):
    def __init__(self, *args, **kwargs):
        # dataset configs
        super(BaseTask, self).__init__()
        self.current_epoch = 0
        self.global_step = 0
        self.trainer = None
        self.use_ddp = False
        self.gradient_clip_norm = hparams['clip_grad_norm']
        self.gradient_clip_val = hparams.get('clip_grad_value', 0)
        self.model = None
        self.training_losses_meter = None
        self.logger: SummaryWriter = None

    ######################
    # build model, dataloaders, optimizer, scheduler and tensorboard
    ######################
    def build_model(self):
        raise NotImplementedError

    @data_loader
    def train_dataloader(self):
        raise NotImplementedError

    @data_loader
    def test_dataloader(self):
        raise NotImplementedError

    @data_loader
    def val_dataloader(self):
        raise NotImplementedError

    def build_scheduler(self, optimizer):
        return None

    def build_optimizer(self, model):
        raise NotImplementedError

    def configure_optimizers(self):
        optm = self.build_optimizer(self.model)
        self.scheduler = self.build_scheduler(optm)
        if isinstance(optm, (list, tuple)):
            return optm
        return [optm]

    def build_tensorboard(self, save_dir, name, version, **kwargs):
        root_dir = os.path.join(save_dir, name)
        os.makedirs(root_dir, exist_ok=True)
        log_dir = os.path.join(root_dir, "version_" + str(version))
        self.logger = SummaryWriter(log_dir=log_dir, **kwargs)

    ######################
    # training
    ######################
    def on_train_start(self):
        pass

    def on_epoch_start(self):
        self.training_losses_meter = {'total_loss': utils.AvgrageMeter()}

    def _training_step(self, sample, batch_idx, optimizer_idx):
        """

        :param sample:
        :param batch_idx:
        :return: total loss: torch.Tensor, loss_log: dict
        """
        raise NotImplementedError

    def training_step(self, sample, batch_idx, optimizer_idx=-1):
        """

        :param sample:
        :param batch_idx:
        :param optimizer_idx:
        :return: {'loss': torch.Tensor, 'progress_bar': dict, 'tb_log': dict}
        """
        loss_ret = self._training_step(sample, batch_idx, optimizer_idx)
        if loss_ret is None:
            return {'loss': None}
        total_loss, log_outputs = loss_ret
        log_outputs = utils.tensors_to_scalars(log_outputs)
        for k, v in log_outputs.items():
            if k not in self.training_losses_meter:
                self.training_losses_meter[k] = utils.AvgrageMeter()
            if not np.isnan(v):
                self.training_losses_meter[k].update(v)
        self.training_losses_meter['total_loss'].update(total_loss.item())

        if optimizer_idx >= 0:
            log_outputs[f'lr_{optimizer_idx}'] = self.trainer.optimizers[optimizer_idx].param_groups[0]['lr']

        progress_bar_log = log_outputs
        tb_log = {f'tr/{k}': v for k, v in log_outputs.items()}
        return {
            'loss': total_loss,
            'progress_bar': progress_bar_log,
            'tb_log': tb_log
        }

    def on_before_optimization(self, opt_idx):
        if self.gradient_clip_norm > 0:
            torch.nn.utils.clip_grad_norm_(self.parameters(), self.gradient_clip_norm)
        if self.gradient_clip_val > 0:
            torch.nn.utils.clip_grad_value_(self.parameters(), self.gradient_clip_val)

    def on_after_optimization(self, epoch, batch_idx, optimizer, optimizer_idx):
        if self.scheduler is not None:
            self.scheduler.step(self.global_step // hparams['accumulate_grad_batches'])

    def on_epoch_end(self):
        loss_outputs = {k: round(v.avg, 4) for k, v in self.training_losses_meter.items()}
        print(f"Epoch {self.current_epoch} ended. Steps: {self.global_step}. {loss_outputs}")

    def on_train_end(self):
        pass

    ######################
    # validation
    ######################
    def validation_step(self, sample, batch_idx):
        """

        :param sample:
        :param batch_idx:
        :return: output: {"losses": {...}, "total_loss": float, ...} or (total loss: torch.Tensor, loss_log: dict)
        """
        raise NotImplementedError

    def validation_end(self, outputs):
        """

        :param outputs:
        :return: loss_output: dict
        """
        all_losses_meter = {'total_loss': utils.AvgrageMeter()}
        for output in outputs:
            if len(output) == 0 or output is None:
                continue
            if isinstance(output, dict):
                assert 'losses' in output, 'Key "losses" should exist in validation output.'
                n = output.pop('nsamples', 1)
                losses = utils.tensors_to_scalars(output['losses'])
                total_loss = output.get('total_loss', sum(losses.values()))
            else:
                assert len(output) == 2, 'Validation output should only consist of two elements: (total_loss, losses)'
                n = 1
                total_loss, losses = output
                losses = utils.tensors_to_scalars(losses)
            if isinstance(total_loss, torch.Tensor):
                total_loss = total_loss.item()
            for k, v in losses.items():
                if k not in all_losses_meter:
                    all_losses_meter[k] = utils.AvgrageMeter()
                all_losses_meter[k].update(v, n)
            all_losses_meter['total_loss'].update(total_loss, n)
        loss_output = {k: round(v.avg, 4) for k, v in all_losses_meter.items()}
        print(f"| Valid results: {loss_output}")
        return {
            'tb_log': {f'val/{k}': v for k, v in loss_output.items()},
            'val_loss': loss_output['total_loss']
        }

    ######################
    # testing
    ######################
    def test_start(self):
        pass

    def test_step(self, sample, batch_idx):
        return self.validation_step(sample, batch_idx)

    def test_end(self, outputs):
        return self.validation_end(outputs)

    ######################
    # utils
    ######################
    def load_ckpt(self, ckpt_base_dir, current_model_name=None, model_name='model', force=True, strict=True):
        if current_model_name is None:
            current_model_name = model_name
        utils.load_ckpt(self.__getattr__(current_model_name), ckpt_base_dir, current_model_name, force, strict)

    ######################
    # start training/testing
    ######################
    @classmethod
    def start(cls):
        os.environ['MASTER_PORT'] = str(random.randint(15000, 30000))
        random.seed(hparams['seed'])
        np.random.seed(hparams['seed'])
        work_dir = hparams['work_dir']
        trainer = Trainer(
            work_dir=work_dir,
            val_check_interval=hparams['val_check_interval'],
            tb_log_interval=hparams['tb_log_interval'],
            max_updates=hparams['max_updates'],
            num_sanity_val_steps=hparams['num_sanity_val_steps'] if not hparams['validate'] else 10000,
            accumulate_grad_batches=hparams['accumulate_grad_batches'],
            print_nan_grads=hparams['print_nan_grads'],
            resume_from_checkpoint=hparams.get('resume_from_checkpoint', 0),
            amp=hparams['amp'],
            # save ckpt
            monitor_key=hparams['valid_monitor_key'],
            monitor_mode=hparams['valid_monitor_mode'],
            num_ckpt_keep=hparams['num_ckpt_keep'],
            save_best=hparams['save_best'],
            seed=hparams['seed'],
            debug=hparams['debug']
        )
        if not hparams['inference']:  # train
            if len(hparams['save_codes']) > 0:
                t = datetime.now().strftime('%Y%m%d%H%M%S')
                code_dir = f'{work_dir}/codes/{t}'
                subprocess.check_call(f'mkdir -p "{code_dir}"', shell=True)
                for c in hparams['save_codes']:
                    if os.path.exists(c):
                        subprocess.check_call(f'rsync -av --exclude=__pycache__  "{c}" "{code_dir}/"', shell=True)
                print(f"| Copied codes to {code_dir}.")
            trainer.fit(cls)
        else:
            trainer.test(cls)

    def on_keyboard_interrupt(self):
        pass