File size: 7,251 Bytes
64e7f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import matplotlib

matplotlib.use('Agg')

import glob
import importlib
from utils.cwt import get_lf0_cwt
import os
import torch.optim
import torch.utils.data
from utils.indexed_datasets import IndexedDataset
from utils.pitch_utils import norm_interp_f0
import numpy as np
from tasks.base_task import BaseDataset
import torch
import torch.optim
import torch.utils.data
import utils
import torch.distributions
from utils.hparams import hparams


class FastSpeechDataset(BaseDataset):
    def __init__(self, prefix, shuffle=False):
        super().__init__(shuffle)
        self.data_dir = hparams['binary_data_dir']
        self.prefix = prefix
        self.hparams = hparams
        self.sizes = np.load(f'{self.data_dir}/{self.prefix}_lengths.npy')
        self.indexed_ds = None
        # self.name2spk_id={}

        # pitch stats
        f0_stats_fn = f'{self.data_dir}/train_f0s_mean_std.npy'
        if os.path.exists(f0_stats_fn):
            hparams['f0_mean'], hparams['f0_std'] = self.f0_mean, self.f0_std = np.load(f0_stats_fn)
            hparams['f0_mean'] = float(hparams['f0_mean'])
            hparams['f0_std'] = float(hparams['f0_std'])
        else:
            hparams['f0_mean'], hparams['f0_std'] = self.f0_mean, self.f0_std = None, None

        if prefix == 'test':
            if hparams['test_input_dir'] != '':
                self.indexed_ds, self.sizes = self.load_test_inputs(hparams['test_input_dir'])
            else:
                if hparams['num_test_samples'] > 0:
                    self.avail_idxs = list(range(hparams['num_test_samples'])) + hparams['test_ids']
                    self.sizes = [self.sizes[i] for i in self.avail_idxs]

        if hparams['pitch_type'] == 'cwt':
            _, hparams['cwt_scales'] = get_lf0_cwt(np.ones(10))

    def _get_item(self, index):
        if hasattr(self, 'avail_idxs') and self.avail_idxs is not None:
            index = self.avail_idxs[index]
        if self.indexed_ds is None:
            self.indexed_ds = IndexedDataset(f'{self.data_dir}/{self.prefix}')
        return self.indexed_ds[index]

    def __getitem__(self, index):
        hparams = self.hparams
        item = self._get_item(index)
        max_frames = hparams['max_frames']
        spec = torch.Tensor(item['mel'])[:max_frames]
        energy = (spec.exp() ** 2).sum(-1).sqrt()
        mel2ph = torch.LongTensor(item['mel2ph'])[:max_frames] if 'mel2ph' in item else None
        f0, uv = norm_interp_f0(item["f0"][:max_frames], hparams)
        phone = torch.LongTensor(item['phone'][:hparams['max_input_tokens']])
        pitch = torch.LongTensor(item.get("pitch"))[:max_frames]
        # print(item.keys(), item['mel'].shape, spec.shape)
        sample = {
            "id": index,
            "item_name": item['item_name'],
            "text": item['txt'],
            "txt_token": phone,
            "mel": spec,
            "pitch": pitch,
            "energy": energy,
            "f0": f0,
            "uv": uv,
            "mel2ph": mel2ph,
            "mel_nonpadding": spec.abs().sum(-1) > 0,
        }
        if self.hparams['use_spk_embed']:
            sample["spk_embed"] = torch.Tensor(item['spk_embed'])
        if self.hparams['use_spk_id']:
            sample["spk_id"] = item['spk_id']
            # sample['spk_id'] = 0
            # for key in self.name2spk_id.keys():
            #     if key in item['item_name']:
            #         sample['spk_id'] = self.name2spk_id[key]
            #         break
        if self.hparams['pitch_type'] == 'cwt':
            cwt_spec = torch.Tensor(item['cwt_spec'])[:max_frames]
            f0_mean = item.get('f0_mean', item.get('cwt_mean'))
            f0_std = item.get('f0_std', item.get('cwt_std'))
            sample.update({"cwt_spec": cwt_spec, "f0_mean": f0_mean, "f0_std": f0_std})
        elif self.hparams['pitch_type'] == 'ph':
            f0_phlevel_sum = torch.zeros_like(phone).float().scatter_add(0, mel2ph - 1, f0)
            f0_phlevel_num = torch.zeros_like(phone).float().scatter_add(
                0, mel2ph - 1, torch.ones_like(f0)).clamp_min(1)
            sample["f0_ph"] = f0_phlevel_sum / f0_phlevel_num
        return sample

    def collater(self, samples):
        if len(samples) == 0:
            return {}
        id = torch.LongTensor([s['id'] for s in samples])
        item_names = [s['item_name'] for s in samples]
        text = [s['text'] for s in samples]
        txt_tokens = utils.collate_1d([s['txt_token'] for s in samples], 0)
        f0 = utils.collate_1d([s['f0'] for s in samples], 0.0)
        pitch = utils.collate_1d([s['pitch'] for s in samples])
        uv = utils.collate_1d([s['uv'] for s in samples])
        energy = utils.collate_1d([s['energy'] for s in samples], 0.0)
        mel2ph = utils.collate_1d([s['mel2ph'] for s in samples], 0.0) \
            if samples[0]['mel2ph'] is not None else None
        mels = utils.collate_2d([s['mel'] for s in samples], 0.0)
        txt_lengths = torch.LongTensor([s['txt_token'].numel() for s in samples])
        mel_lengths = torch.LongTensor([s['mel'].shape[0] for s in samples])

        batch = {
            'id': id,
            'item_name': item_names,
            'nsamples': len(samples),
            'text': text,
            'txt_tokens': txt_tokens,
            'txt_lengths': txt_lengths,
            'mels': mels,
            'mel_lengths': mel_lengths,
            'mel2ph': mel2ph,
            'energy': energy,
            'pitch': pitch,
            'f0': f0,
            'uv': uv,
        }

        if self.hparams['use_spk_embed']:
            spk_embed = torch.stack([s['spk_embed'] for s in samples])
            batch['spk_embed'] = spk_embed
        if self.hparams['use_spk_id']:
            spk_ids = torch.LongTensor([s['spk_id'] for s in samples])
            batch['spk_ids'] = spk_ids
        if self.hparams['pitch_type'] == 'cwt':
            cwt_spec = utils.collate_2d([s['cwt_spec'] for s in samples])
            f0_mean = torch.Tensor([s['f0_mean'] for s in samples])
            f0_std = torch.Tensor([s['f0_std'] for s in samples])
            batch.update({'cwt_spec': cwt_spec, 'f0_mean': f0_mean, 'f0_std': f0_std})
        elif self.hparams['pitch_type'] == 'ph':
            batch['f0'] = utils.collate_1d([s['f0_ph'] for s in samples])

        return batch

    def load_test_inputs(self, test_input_dir, spk_id=0):
        inp_wav_paths = glob.glob(f'{test_input_dir}/*.wav') + glob.glob(f'{test_input_dir}/*.mp3')
        sizes = []
        items = []

        binarizer_cls = hparams.get("binarizer_cls", 'data_gen.tts.base_binarizerr.BaseBinarizer')
        pkg = ".".join(binarizer_cls.split(".")[:-1])
        cls_name = binarizer_cls.split(".")[-1]
        binarizer_cls = getattr(importlib.import_module(pkg), cls_name)
        binarization_args = hparams['binarization_args']

        for wav_fn in inp_wav_paths:
            item_name = os.path.basename(wav_fn)
            ph = txt = tg_fn = ''
            wav_fn = wav_fn
            encoder = None
            item = binarizer_cls.process_item(item_name, ph, txt, tg_fn, wav_fn, spk_id, encoder, binarization_args)
            items.append(item)
            sizes.append(item['len'])
        return items, sizes