ProDiff / utils /tts_utils.py
Rongjiehuang's picture
init
64e7f2f
raw
history blame
13.7 kB
from collections import defaultdict
import torch
import torch.nn.functional as F
def make_positions(tensor, padding_idx):
"""Replace non-padding symbols with their position numbers.
Position numbers begin at padding_idx+1. Padding symbols are ignored.
"""
# The series of casts and type-conversions here are carefully
# balanced to both work with ONNX export and XLA. In particular XLA
# prefers ints, cumsum defaults to output longs, and ONNX doesn't know
# how to handle the dtype kwarg in cumsum.
mask = tensor.ne(padding_idx).int()
return (
torch.cumsum(mask, dim=1).type_as(mask) * mask
).long() + padding_idx
def softmax(x, dim):
return F.softmax(x, dim=dim, dtype=torch.float32)
def sequence_mask(lengths, maxlen, dtype=torch.bool):
if maxlen is None:
maxlen = lengths.max()
mask = ~(torch.ones((len(lengths), maxlen)).to(lengths.device).cumsum(dim=1).t() > lengths).t()
mask.type(dtype)
return mask
INCREMENTAL_STATE_INSTANCE_ID = defaultdict(lambda: 0)
def _get_full_incremental_state_key(module_instance, key):
module_name = module_instance.__class__.__name__
# assign a unique ID to each module instance, so that incremental state is
# not shared across module instances
if not hasattr(module_instance, '_instance_id'):
INCREMENTAL_STATE_INSTANCE_ID[module_name] += 1
module_instance._instance_id = INCREMENTAL_STATE_INSTANCE_ID[module_name]
return '{}.{}.{}'.format(module_name, module_instance._instance_id, key)
def get_incremental_state(module, incremental_state, key):
"""Helper for getting incremental state for an nn.Module."""
full_key = _get_full_incremental_state_key(module, key)
if incremental_state is None or full_key not in incremental_state:
return None
return incremental_state[full_key]
def set_incremental_state(module, incremental_state, key, value):
"""Helper for setting incremental state for an nn.Module."""
if incremental_state is not None:
full_key = _get_full_incremental_state_key(module, key)
incremental_state[full_key] = value
def fill_with_neg_inf(t):
"""FP16-compatible function that fills a tensor with -inf."""
return t.float().fill_(float('-inf')).type_as(t)
def fill_with_neg_inf2(t):
"""FP16-compatible function that fills a tensor with -inf."""
return t.float().fill_(-1e8).type_as(t)
def get_focus_rate(attn, src_padding_mask=None, tgt_padding_mask=None):
'''
attn: bs x L_t x L_s
'''
if src_padding_mask is not None:
attn = attn * (1 - src_padding_mask.float())[:, None, :]
if tgt_padding_mask is not None:
attn = attn * (1 - tgt_padding_mask.float())[:, :, None]
focus_rate = attn.max(-1).values.sum(-1)
focus_rate = focus_rate / attn.sum(-1).sum(-1)
return focus_rate
def get_phone_coverage_rate(attn, src_padding_mask=None, src_seg_mask=None, tgt_padding_mask=None):
'''
attn: bs x L_t x L_s
'''
src_mask = attn.new(attn.size(0), attn.size(-1)).bool().fill_(False)
if src_padding_mask is not None:
src_mask |= src_padding_mask
if src_seg_mask is not None:
src_mask |= src_seg_mask
attn = attn * (1 - src_mask.float())[:, None, :]
if tgt_padding_mask is not None:
attn = attn * (1 - tgt_padding_mask.float())[:, :, None]
phone_coverage_rate = attn.max(1).values.sum(-1)
# phone_coverage_rate = phone_coverage_rate / attn.sum(-1).sum(-1)
phone_coverage_rate = phone_coverage_rate / (1 - src_mask.float()).sum(-1)
return phone_coverage_rate
def get_diagonal_focus_rate(attn, attn_ks, target_len, src_padding_mask=None, tgt_padding_mask=None,
band_mask_factor=5, band_width=50):
'''
attn: bx x L_t x L_s
attn_ks: shape: tensor with shape [batch_size], input_lens/output_lens
diagonal: y=k*x (k=attn_ks, x:output, y:input)
1 0 0
0 1 0
0 0 1
y>=k*(x-width) and y<=k*(x+width):1
else:0
'''
# width = min(target_len/band_mask_factor, 50)
width1 = target_len / band_mask_factor
width2 = target_len.new(target_len.size()).fill_(band_width)
width = torch.where(width1 < width2, width1, width2).float()
base = torch.ones(attn.size()).to(attn.device)
zero = torch.zeros(attn.size()).to(attn.device)
x = torch.arange(0, attn.size(1)).to(attn.device)[None, :, None].float() * base
y = torch.arange(0, attn.size(2)).to(attn.device)[None, None, :].float() * base
cond = (y - attn_ks[:, None, None] * x)
cond1 = cond + attn_ks[:, None, None] * width[:, None, None]
cond2 = cond - attn_ks[:, None, None] * width[:, None, None]
mask1 = torch.where(cond1 < 0, zero, base)
mask2 = torch.where(cond2 > 0, zero, base)
mask = mask1 * mask2
if src_padding_mask is not None:
attn = attn * (1 - src_padding_mask.float())[:, None, :]
if tgt_padding_mask is not None:
attn = attn * (1 - tgt_padding_mask.float())[:, :, None]
diagonal_attn = attn * mask
diagonal_focus_rate = diagonal_attn.sum(-1).sum(-1) / attn.sum(-1).sum(-1)
return diagonal_focus_rate, mask
def select_attn(attn_logits, type='best'):
"""
:param attn_logits: [n_layers, B, n_head, T_sp, T_txt]
:return:
"""
encdec_attn = torch.stack(attn_logits, 0).transpose(1, 2)
# [n_layers * n_head, B, T_sp, T_txt]
encdec_attn = (encdec_attn.reshape([-1, *encdec_attn.shape[2:]])).softmax(-1)
if type == 'best':
indices = encdec_attn.max(-1).values.sum(-1).argmax(0)
encdec_attn = encdec_attn.gather(
0, indices[None, :, None, None].repeat(1, 1, encdec_attn.size(-2), encdec_attn.size(-1)))[0]
return encdec_attn
elif type == 'mean':
return encdec_attn.mean(0)
def make_pad_mask(lengths, xs=None, length_dim=-1):
"""Make mask tensor containing indices of padded part.
Args:
lengths (LongTensor or List): Batch of lengths (B,).
xs (Tensor, optional): The reference tensor.
If set, masks will be the same shape as this tensor.
length_dim (int, optional): Dimension indicator of the above tensor.
See the example.
Returns:
Tensor: Mask tensor containing indices of padded part.
dtype=torch.uint8 in PyTorch 1.2-
dtype=torch.bool in PyTorch 1.2+ (including 1.2)
Examples:
With only lengths.
>>> lengths = [5, 3, 2]
>>> make_non_pad_mask(lengths)
masks = [[0, 0, 0, 0 ,0],
[0, 0, 0, 1, 1],
[0, 0, 1, 1, 1]]
With the reference tensor.
>>> xs = torch.zeros((3, 2, 4))
>>> make_pad_mask(lengths, xs)
tensor([[[0, 0, 0, 0],
[0, 0, 0, 0]],
[[0, 0, 0, 1],
[0, 0, 0, 1]],
[[0, 0, 1, 1],
[0, 0, 1, 1]]], dtype=torch.uint8)
>>> xs = torch.zeros((3, 2, 6))
>>> make_pad_mask(lengths, xs)
tensor([[[0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 1]],
[[0, 0, 0, 1, 1, 1],
[0, 0, 0, 1, 1, 1]],
[[0, 0, 1, 1, 1, 1],
[0, 0, 1, 1, 1, 1]]], dtype=torch.uint8)
With the reference tensor and dimension indicator.
>>> xs = torch.zeros((3, 6, 6))
>>> make_pad_mask(lengths, xs, 1)
tensor([[[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1]],
[[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1]],
[[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1]]], dtype=torch.uint8)
>>> make_pad_mask(lengths, xs, 2)
tensor([[[0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 1]],
[[0, 0, 0, 1, 1, 1],
[0, 0, 0, 1, 1, 1],
[0, 0, 0, 1, 1, 1],
[0, 0, 0, 1, 1, 1],
[0, 0, 0, 1, 1, 1],
[0, 0, 0, 1, 1, 1]],
[[0, 0, 1, 1, 1, 1],
[0, 0, 1, 1, 1, 1],
[0, 0, 1, 1, 1, 1],
[0, 0, 1, 1, 1, 1],
[0, 0, 1, 1, 1, 1],
[0, 0, 1, 1, 1, 1]]], dtype=torch.uint8)
"""
if length_dim == 0:
raise ValueError("length_dim cannot be 0: {}".format(length_dim))
if not isinstance(lengths, list):
lengths = lengths.tolist()
bs = int(len(lengths))
if xs is None:
maxlen = int(max(lengths))
else:
maxlen = xs.size(length_dim)
seq_range = torch.arange(0, maxlen, dtype=torch.int64)
seq_range_expand = seq_range.unsqueeze(0).expand(bs, maxlen)
seq_length_expand = seq_range_expand.new(lengths).unsqueeze(-1)
mask = seq_range_expand >= seq_length_expand
if xs is not None:
assert xs.size(0) == bs, (xs.size(0), bs)
if length_dim < 0:
length_dim = xs.dim() + length_dim
# ind = (:, None, ..., None, :, , None, ..., None)
ind = tuple(
slice(None) if i in (0, length_dim) else None for i in range(xs.dim())
)
mask = mask[ind].expand_as(xs).to(xs.device)
return mask
def make_non_pad_mask(lengths, xs=None, length_dim=-1):
"""Make mask tensor containing indices of non-padded part.
Args:
lengths (LongTensor or List): Batch of lengths (B,).
xs (Tensor, optional): The reference tensor.
If set, masks will be the same shape as this tensor.
length_dim (int, optional): Dimension indicator of the above tensor.
See the example.
Returns:
ByteTensor: mask tensor containing indices of padded part.
dtype=torch.uint8 in PyTorch 1.2-
dtype=torch.bool in PyTorch 1.2+ (including 1.2)
Examples:
With only lengths.
>>> lengths = [5, 3, 2]
>>> make_non_pad_mask(lengths)
masks = [[1, 1, 1, 1 ,1],
[1, 1, 1, 0, 0],
[1, 1, 0, 0, 0]]
With the reference tensor.
>>> xs = torch.zeros((3, 2, 4))
>>> make_non_pad_mask(lengths, xs)
tensor([[[1, 1, 1, 1],
[1, 1, 1, 1]],
[[1, 1, 1, 0],
[1, 1, 1, 0]],
[[1, 1, 0, 0],
[1, 1, 0, 0]]], dtype=torch.uint8)
>>> xs = torch.zeros((3, 2, 6))
>>> make_non_pad_mask(lengths, xs)
tensor([[[1, 1, 1, 1, 1, 0],
[1, 1, 1, 1, 1, 0]],
[[1, 1, 1, 0, 0, 0],
[1, 1, 1, 0, 0, 0]],
[[1, 1, 0, 0, 0, 0],
[1, 1, 0, 0, 0, 0]]], dtype=torch.uint8)
With the reference tensor and dimension indicator.
>>> xs = torch.zeros((3, 6, 6))
>>> make_non_pad_mask(lengths, xs, 1)
tensor([[[1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1],
[0, 0, 0, 0, 0, 0]],
[[1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0]],
[[1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0]]], dtype=torch.uint8)
>>> make_non_pad_mask(lengths, xs, 2)
tensor([[[1, 1, 1, 1, 1, 0],
[1, 1, 1, 1, 1, 0],
[1, 1, 1, 1, 1, 0],
[1, 1, 1, 1, 1, 0],
[1, 1, 1, 1, 1, 0],
[1, 1, 1, 1, 1, 0]],
[[1, 1, 1, 0, 0, 0],
[1, 1, 1, 0, 0, 0],
[1, 1, 1, 0, 0, 0],
[1, 1, 1, 0, 0, 0],
[1, 1, 1, 0, 0, 0],
[1, 1, 1, 0, 0, 0]],
[[1, 1, 0, 0, 0, 0],
[1, 1, 0, 0, 0, 0],
[1, 1, 0, 0, 0, 0],
[1, 1, 0, 0, 0, 0],
[1, 1, 0, 0, 0, 0],
[1, 1, 0, 0, 0, 0]]], dtype=torch.uint8)
"""
return ~make_pad_mask(lengths, xs, length_dim)
def get_mask_from_lengths(lengths):
max_len = torch.max(lengths).item()
ids = torch.arange(0, max_len).to(lengths.device)
mask = (ids < lengths.unsqueeze(1)).bool()
return mask
def group_hidden_by_segs(h, seg_ids, max_len):
"""
:param h: [B, T, H]
:param seg_ids: [B, T]
:return: h_ph: [B, T_ph, H]
"""
B, T, H = h.shape
h_gby_segs = h.new_zeros([B, max_len + 1, H]).scatter_add_(1, seg_ids[:, :, None].repeat([1, 1, H]), h)
all_ones = h.new_ones(h.shape[:2])
cnt_gby_segs = h.new_zeros([B, max_len + 1]).scatter_add_(1, seg_ids, all_ones).contiguous()
h_gby_segs = h_gby_segs[:, 1:]
cnt_gby_segs = cnt_gby_segs[:, 1:]
h_gby_segs = h_gby_segs / torch.clamp(cnt_gby_segs[:, :, None], min=1)
return h_gby_segs, cnt_gby_segs