Rongjiehuang's picture
init
64e7f2f
raw
history blame
14.4 kB
import math
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import Conv1d
LRELU_SLOPE = 0.1
def get_sinusoid_encoding_table(n_position, d_hid, padding_idx=None):
''' Sinusoid position encoding table '''
def cal_angle(position, hid_idx):
return position / np.power(10000, 2 * (hid_idx // 2) / d_hid)
def get_posi_angle_vec(position):
return [cal_angle(position, hid_j) for hid_j in range(d_hid)]
sinusoid_table = np.array([get_posi_angle_vec(pos_i)
for pos_i in range(n_position)])
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
if padding_idx is not None:
# zero vector for padding dimension
sinusoid_table[padding_idx] = 0.
return torch.FloatTensor(sinusoid_table)
def overlap_and_add(signal, frame_step):
"""Reconstructs a signal from a framed representation.
Adds potentially overlapping frames of a signal with shape
`[..., frames, frame_length]`, offsetting subsequent frames by `frame_step`.
The resulting tensor has shape `[..., output_size]` where
output_size = (frames - 1) * frame_step + frame_length
Args:
signal: A [..., frames, frame_length] Tensor. All dimensions may be unknown, and rank must be at least 2.
frame_step: An integer denoting overlap offsets. Must be less than or equal to frame_length.
Returns:
A Tensor with shape [..., output_size] containing the overlap-added frames of signal's inner-most two dimensions.
output_size = (frames - 1) * frame_step + frame_length
Based on https://github.com/tensorflow/tensorflow/blob/r1.12/tensorflow/contrib/signal/python/ops/reconstruction_ops.py
"""
outer_dimensions = signal.size()[:-2]
frames, frame_length = signal.size()[-2:]
# gcd=Greatest Common Divisor
subframe_length = math.gcd(frame_length, frame_step)
subframe_step = frame_step // subframe_length
subframes_per_frame = frame_length // subframe_length
output_size = frame_step * (frames - 1) + frame_length
output_subframes = output_size // subframe_length
subframe_signal = signal.view(*outer_dimensions, -1, subframe_length)
frame = torch.arange(0, output_subframes).unfold(0, subframes_per_frame, subframe_step)
frame = signal.new_tensor(frame).long() # signal may in GPU or CPU
frame = frame.contiguous().view(-1)
result = signal.new_zeros(*outer_dimensions, output_subframes, subframe_length)
device_of_result = result.device
result.index_add_(-2, frame.to(device_of_result), subframe_signal)
result = result.view(*outer_dimensions, -1)
return result
class LastLayer(nn.Module):
def __init__(self, in_channels, out_channels,
nonlinear_activation, nonlinear_activation_params,
pad, kernel_size, pad_params, bias):
super(LastLayer, self).__init__()
self.activation = getattr(torch.nn, nonlinear_activation)(**nonlinear_activation_params)
self.pad = getattr(torch.nn, pad)((kernel_size - 1) // 2, **pad_params)
self.conv = torch.nn.Conv1d(in_channels, out_channels, kernel_size, bias=bias)
def forward(self, x):
x = self.activation(x)
x = self.pad(x)
x = self.conv(x)
return x
class WeightConv1d(Conv1d):
"""Conv1d module with customized initialization."""
def __init__(self, *args, **kwargs):
"""Initialize Conv1d module."""
super(Conv1d, self).__init__(*args, **kwargs)
def reset_parameters(self):
"""Reset parameters."""
torch.nn.init.kaiming_normal_(self.weight, nonlinearity="relu")
if self.bias is not None:
torch.nn.init.constant_(self.bias, 0.0)
class Conv1d1x1(Conv1d):
"""1x1 Conv1d with customized initialization."""
def __init__(self, in_channels, out_channels, bias):
"""Initialize 1x1 Conv1d module."""
super(Conv1d1x1, self).__init__(in_channels, out_channels,
kernel_size=1, padding=0,
dilation=1, bias=bias)
class DiffusionDBlock(nn.Module):
def __init__(self, input_size, hidden_size, factor):
super().__init__()
self.factor = factor
self.residual_dense = Conv1d(input_size, hidden_size, 1)
self.conv = nn.ModuleList([
Conv1d(input_size, hidden_size, 3, dilation=1, padding=1),
Conv1d(hidden_size, hidden_size, 3, dilation=2, padding=2),
Conv1d(hidden_size, hidden_size, 3, dilation=4, padding=4),
])
def forward(self, x):
size = x.shape[-1] // self.factor
residual = self.residual_dense(x)
residual = F.interpolate(residual, size=size)
x = F.interpolate(x, size=size)
for layer in self.conv:
x = F.leaky_relu(x, 0.2)
x = layer(x)
return x + residual
class TimeAware_LVCBlock(torch.nn.Module):
''' time-aware location-variable convolutions
'''
def __init__(self,
in_channels,
cond_channels,
upsample_ratio,
conv_layers=4,
conv_kernel_size=3,
cond_hop_length=256,
kpnet_hidden_channels=64,
kpnet_conv_size=3,
kpnet_dropout=0.0,
noise_scale_embed_dim_out=512
):
super().__init__()
self.cond_hop_length = cond_hop_length
self.conv_layers = conv_layers
self.conv_kernel_size = conv_kernel_size
self.convs = torch.nn.ModuleList()
self.upsample = torch.nn.ConvTranspose1d(in_channels, in_channels,
kernel_size=upsample_ratio*2, stride=upsample_ratio,
padding=upsample_ratio // 2 + upsample_ratio % 2,
output_padding=upsample_ratio % 2)
self.kernel_predictor = KernelPredictor(
cond_channels=cond_channels,
conv_in_channels=in_channels,
conv_out_channels=2 * in_channels,
conv_layers=conv_layers,
conv_kernel_size=conv_kernel_size,
kpnet_hidden_channels=kpnet_hidden_channels,
kpnet_conv_size=kpnet_conv_size,
kpnet_dropout=kpnet_dropout
)
# the layer-specific fc for noise scale embedding
self.fc_t = torch.nn.Linear(noise_scale_embed_dim_out, cond_channels)
for i in range(conv_layers):
padding = (3 ** i) * int((conv_kernel_size - 1) / 2)
conv = torch.nn.Conv1d(in_channels, in_channels, kernel_size=conv_kernel_size, padding=padding, dilation=3 ** i)
self.convs.append(conv)
def forward(self, data):
''' forward propagation of the time-aware location-variable convolutions.
Args:
x (Tensor): the input sequence (batch, in_channels, in_length)
c (Tensor): the conditioning sequence (batch, cond_channels, cond_length)
Returns:
Tensor: the output sequence (batch, in_channels, in_length)
'''
x, audio_down, c, noise_embedding = data
batch, in_channels, in_length = x.shape
noise = (self.fc_t(noise_embedding)).unsqueeze(-1) # (B, 80)
condition = c + noise # (B, 80, T)
kernels, bias = self.kernel_predictor(condition)
x = F.leaky_relu(x, 0.2)
x = self.upsample(x)
for i in range(self.conv_layers):
x += audio_down
y = F.leaky_relu(x, 0.2)
y = self.convs[i](y)
y = F.leaky_relu(y, 0.2)
k = kernels[:, i, :, :, :, :]
b = bias[:, i, :, :]
y = self.location_variable_convolution(y, k, b, 1, self.cond_hop_length)
x = x + torch.sigmoid(y[:, :in_channels, :]) * torch.tanh(y[:, in_channels:, :])
return x
def location_variable_convolution(self, x, kernel, bias, dilation, hop_size):
''' perform location-variable convolution operation on the input sequence (x) using the local convolution kernl.
Time: 414 μs ± 309 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each), test on NVIDIA V100.
Args:
x (Tensor): the input sequence (batch, in_channels, in_length).
kernel (Tensor): the local convolution kernel (batch, in_channel, out_channels, kernel_size, kernel_length)
bias (Tensor): the bias for the local convolution (batch, out_channels, kernel_length)
dilation (int): the dilation of convolution.
hop_size (int): the hop_size of the conditioning sequence.
Returns:
(Tensor): the output sequence after performing local convolution. (batch, out_channels, in_length).
'''
batch, in_channels, in_length = x.shape
batch, in_channels, out_channels, kernel_size, kernel_length = kernel.shape
assert in_length == (kernel_length * hop_size), "length of (x, kernel) is not matched"
padding = dilation * int((kernel_size - 1) / 2)
x = F.pad(x, (padding, padding), 'constant', 0) # (batch, in_channels, in_length + 2*padding)
x = x.unfold(2, hop_size + 2 * padding, hop_size) # (batch, in_channels, kernel_length, hop_size + 2*padding)
if hop_size < dilation:
x = F.pad(x, (0, dilation), 'constant', 0)
x = x.unfold(3, dilation,
dilation) # (batch, in_channels, kernel_length, (hop_size + 2*padding)/dilation, dilation)
x = x[:, :, :, :, :hop_size]
x = x.transpose(3, 4) # (batch, in_channels, kernel_length, dilation, (hop_size + 2*padding)/dilation)
x = x.unfold(4, kernel_size, 1) # (batch, in_channels, kernel_length, dilation, _, kernel_size)
o = torch.einsum('bildsk,biokl->bolsd', x, kernel)
o = o + bias.unsqueeze(-1).unsqueeze(-1)
o = o.contiguous().view(batch, out_channels, -1)
return o
class KernelPredictor(torch.nn.Module):
''' Kernel predictor for the time-aware location-variable convolutions
'''
def __init__(self,
cond_channels,
conv_in_channels,
conv_out_channels,
conv_layers,
conv_kernel_size=3,
kpnet_hidden_channels=64,
kpnet_conv_size=3,
kpnet_dropout=0.0,
kpnet_nonlinear_activation="LeakyReLU",
kpnet_nonlinear_activation_params={"negative_slope": 0.1}
):
'''
Args:
cond_channels (int): number of channel for the conditioning sequence,
conv_in_channels (int): number of channel for the input sequence,
conv_out_channels (int): number of channel for the output sequence,
conv_layers (int):
kpnet_
'''
super().__init__()
self.conv_in_channels = conv_in_channels
self.conv_out_channels = conv_out_channels
self.conv_kernel_size = conv_kernel_size
self.conv_layers = conv_layers
l_w = conv_in_channels * conv_out_channels * conv_kernel_size * conv_layers
l_b = conv_out_channels * conv_layers
padding = (kpnet_conv_size - 1) // 2
self.input_conv = torch.nn.Sequential(
torch.nn.Conv1d(cond_channels, kpnet_hidden_channels, 5, padding=(5 - 1) // 2, bias=True),
getattr(torch.nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params),
)
self.residual_conv = torch.nn.Sequential(
torch.nn.Dropout(kpnet_dropout),
torch.nn.Conv1d(kpnet_hidden_channels, kpnet_hidden_channels, kpnet_conv_size, padding=padding, bias=True),
getattr(torch.nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params),
torch.nn.Conv1d(kpnet_hidden_channels, kpnet_hidden_channels, kpnet_conv_size, padding=padding, bias=True),
getattr(torch.nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params),
torch.nn.Dropout(kpnet_dropout),
torch.nn.Conv1d(kpnet_hidden_channels, kpnet_hidden_channels, kpnet_conv_size, padding=padding, bias=True),
getattr(torch.nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params),
torch.nn.Conv1d(kpnet_hidden_channels, kpnet_hidden_channels, kpnet_conv_size, padding=padding, bias=True),
getattr(torch.nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params),
torch.nn.Dropout(kpnet_dropout),
torch.nn.Conv1d(kpnet_hidden_channels, kpnet_hidden_channels, kpnet_conv_size, padding=padding, bias=True),
getattr(torch.nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params),
torch.nn.Conv1d(kpnet_hidden_channels, kpnet_hidden_channels, kpnet_conv_size, padding=padding, bias=True),
getattr(torch.nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params),
)
self.kernel_conv = torch.nn.Conv1d(kpnet_hidden_channels, l_w, kpnet_conv_size,
padding=padding, bias=True)
self.bias_conv = torch.nn.Conv1d(kpnet_hidden_channels, l_b, kpnet_conv_size, padding=padding,
bias=True)
def forward(self, c):
'''
Args:
c (Tensor): the conditioning sequence (batch, cond_channels, cond_length)
Returns:
'''
batch, cond_channels, cond_length = c.shape
c = self.input_conv(c)
c = c + self.residual_conv(c)
k = self.kernel_conv(c)
b = self.bias_conv(c)
kernels = k.contiguous().view(batch,
self.conv_layers,
self.conv_in_channels,
self.conv_out_channels,
self.conv_kernel_size,
cond_length)
bias = b.contiguous().view(batch,
self.conv_layers,
self.conv_out_channels,
cond_length)
return kernels, bias