ProDiff / data_gen /tts /base_preprocess.py
Rongjiehuang's picture
init
64e7f2f
import json
import os
import random
import re
import traceback
from collections import Counter
from functools import partial
import librosa
from tqdm import tqdm
from data_gen.tts.txt_processors.base_text_processor import get_txt_processor_cls
from data_gen.tts.wav_processors.base_processor import get_wav_processor_cls
from utils.hparams import hparams
from utils.multiprocess_utils import multiprocess_run_tqdm
from utils.os_utils import link_file, move_file, remove_file
from data_gen.tts.data_gen_utils import is_sil_phoneme, build_token_encoder
class BasePreprocessor:
def __init__(self):
self.preprocess_args = hparams['preprocess_args']
txt_processor = self.preprocess_args['txt_processor']
self.txt_processor = get_txt_processor_cls(txt_processor)
self.raw_data_dir = hparams['raw_data_dir']
self.processed_dir = hparams['processed_data_dir']
self.spk_map_fn = f"{self.processed_dir}/spk_map.json"
def meta_data(self):
"""
:return: {'item_name': Str, 'wav_fn': Str, 'txt': Str, 'spk_name': Str, 'txt_loader': None or Func}
"""
raise NotImplementedError
def process(self):
processed_dir = self.processed_dir
wav_processed_tmp_dir = f'{processed_dir}/processed_tmp'
remove_file(wav_processed_tmp_dir)
os.makedirs(wav_processed_tmp_dir, exist_ok=True)
wav_processed_dir = f'{processed_dir}/{self.wav_processed_dirname}'
remove_file(wav_processed_dir)
os.makedirs(wav_processed_dir, exist_ok=True)
meta_data = list(tqdm(self.meta_data(), desc='Load meta data'))
item_names = [d['item_name'] for d in meta_data]
assert len(item_names) == len(set(item_names)), 'Key `item_name` should be Unique.'
# preprocess data
phone_list = []
word_list = []
spk_names = set()
process_item = partial(self.preprocess_first_pass,
txt_processor=self.txt_processor,
wav_processed_dir=wav_processed_dir,
wav_processed_tmp=wav_processed_tmp_dir,
preprocess_args=self.preprocess_args)
items = []
args = [{
'item_name': item_raw['item_name'],
'txt_raw': item_raw['txt'],
'wav_fn': item_raw['wav_fn'],
'txt_loader': item_raw.get('txt_loader'),
'others': item_raw.get('others', None)
} for item_raw in meta_data]
for item_, (item_id, item) in zip(meta_data, multiprocess_run_tqdm(process_item, args, desc='Preprocess')):
if item is not None:
item_.update(item)
item = item_
if 'txt_loader' in item:
del item['txt_loader']
item['id'] = item_id
item['spk_name'] = item.get('spk_name', '<SINGLE_SPK>')
item['others'] = item.get('others', None)
phone_list += item['ph'].split(" ")
word_list += item['word'].split(" ")
spk_names.add(item['spk_name'])
items.append(item)
# add encoded tokens
ph_encoder, word_encoder = self._phone_encoder(phone_list), self._word_encoder(word_list)
spk_map = self.build_spk_map(spk_names)
args = [{
'ph': item['ph'], 'word': item['word'], 'spk_name': item['spk_name'],
'word_encoder': word_encoder, 'ph_encoder': ph_encoder, 'spk_map': spk_map
} for item in items]
for idx, item_new_kv in multiprocess_run_tqdm(self.preprocess_second_pass, args, desc='Add encoded tokens'):
items[idx].update(item_new_kv)
# build mfa data
if self.preprocess_args['use_mfa']:
mfa_dict = set()
mfa_input_dir = f'{processed_dir}/mfa_inputs'
remove_file(mfa_input_dir)
# group MFA inputs for better parallelism
mfa_groups = [i // self.preprocess_args['nsample_per_mfa_group'] for i in range(len(items))]
if self.preprocess_args['mfa_group_shuffle']:
random.seed(hparams['seed'])
random.shuffle(mfa_groups)
args = [{
'item': item, 'mfa_input_dir': mfa_input_dir,
'mfa_group': mfa_group, 'wav_processed_tmp': wav_processed_tmp_dir,
'preprocess_args': self.preprocess_args
} for item, mfa_group in zip(items, mfa_groups)]
for i, (ph_gb_word_nosil, new_wav_align_fn) in multiprocess_run_tqdm(
self.build_mfa_inputs, args, desc='Build MFA data'):
items[i]['wav_align_fn'] = new_wav_align_fn
for w in ph_gb_word_nosil.split(" "):
mfa_dict.add(f"{w} {w.replace('_', ' ')}")
mfa_dict = sorted(mfa_dict)
with open(f'{processed_dir}/mfa_dict.txt', 'w') as f:
f.writelines([f'{l}\n' for l in mfa_dict])
with open(f"{processed_dir}/{self.meta_csv_filename}.json", 'w') as f:
f.write(re.sub(r'\n\s+([\d+\]])', r'\1', json.dumps(items, ensure_ascii=False, sort_keys=False, indent=1)))
remove_file(wav_processed_tmp_dir)
@classmethod
def preprocess_first_pass(cls, item_name, txt_raw, txt_processor,
wav_fn, wav_processed_dir, wav_processed_tmp,
preprocess_args, txt_loader=None, others=None):
try:
if txt_loader is not None:
txt_raw = txt_loader(txt_raw)
ph, txt, word, ph2word, ph_gb_word = cls.txt_to_ph(txt_processor, txt_raw, preprocess_args)
wav_fn, wav_align_fn = cls.process_wav(
item_name, wav_fn,
hparams['processed_data_dir'],
wav_processed_tmp, preprocess_args)
# wav for binarization
ext = os.path.splitext(wav_fn)[1]
os.makedirs(wav_processed_dir, exist_ok=True)
new_wav_fn = f"{wav_processed_dir}/{item_name}{ext}"
move_link_func = move_file if os.path.dirname(wav_fn) == wav_processed_tmp else link_file
move_link_func(wav_fn, new_wav_fn)
return {
'txt': txt, 'txt_raw': txt_raw, 'ph': ph,
'word': word, 'ph2word': ph2word, 'ph_gb_word': ph_gb_word,
'wav_fn': new_wav_fn, 'wav_align_fn': wav_align_fn,
'others': others
}
except:
traceback.print_exc()
print(f"| Error is caught. item_name: {item_name}.")
return None
@staticmethod
def txt_to_ph(txt_processor, txt_raw, preprocess_args):
txt_struct, txt = txt_processor.process(txt_raw, preprocess_args)
ph = [p for w in txt_struct for p in w[1]]
return " ".join(ph), txt
@staticmethod
def process_wav(item_name, wav_fn, processed_dir, wav_processed_tmp, preprocess_args):
processors = [get_wav_processor_cls(v) for v in preprocess_args['wav_processors']]
processors = [k() for k in processors if k is not None]
if len(processors) >= 1:
sr_file = librosa.core.get_samplerate(wav_fn)
output_fn_for_align = None
ext = os.path.splitext(wav_fn)[1]
input_fn = f"{wav_processed_tmp}/{item_name}{ext}"
link_file(wav_fn, input_fn)
for p in processors:
outputs = p.process(input_fn, sr_file, wav_processed_tmp, processed_dir, item_name, preprocess_args)
if len(outputs) == 3:
input_fn, sr, output_fn_for_align = outputs
else:
input_fn, sr = outputs
return input_fn, output_fn_for_align
else:
return wav_fn, wav_fn
def _phone_encoder(self, ph_set):
ph_set_fn = f"{self.processed_dir}/phone_set.json"
if self.preprocess_args['reset_phone_dict'] or not os.path.exists(ph_set_fn):
ph_set = sorted(set(ph_set))
json.dump(ph_set, open(ph_set_fn, 'w'), ensure_ascii=False)
print("| Build phone set: ", ph_set)
else:
ph_set = json.load(open(ph_set_fn, 'r'))
print("| Load phone set: ", ph_set)
return build_token_encoder(ph_set_fn)
def _word_encoder(self, word_set):
word_set_fn = f"{self.processed_dir}/word_set.json"
if self.preprocess_args['reset_word_dict']:
word_set = Counter(word_set)
total_words = sum(word_set.values())
word_set = word_set.most_common(hparams['word_dict_size'])
num_unk_words = total_words - sum([x[1] for x in word_set])
word_set = ['<BOS>', '<EOS>'] + [x[0] for x in word_set]
word_set = sorted(set(word_set))
json.dump(word_set, open(word_set_fn, 'w'), ensure_ascii=False)
print(f"| Build word set. Size: {len(word_set)}, #total words: {total_words},"
f" #unk_words: {num_unk_words}, word_set[:10]:, {word_set[:10]}.")
else:
word_set = json.load(open(word_set_fn, 'r'))
print("| Load word set. Size: ", len(word_set), word_set[:10])
return build_token_encoder(word_set_fn)
@classmethod
def preprocess_second_pass(cls, word, ph, spk_name, word_encoder, ph_encoder, spk_map):
word_token = word_encoder.encode(word)
ph_token = ph_encoder.encode(ph)
spk_id = spk_map[spk_name]
return {'word_token': word_token, 'ph_token': ph_token, 'spk_id': spk_id}
def build_spk_map(self, spk_names):
spk_map = {x: i for i, x in enumerate(sorted(list(spk_names)))}
assert len(spk_map) == 0 or len(spk_map) <= hparams['num_spk'], len(spk_map)
print(f"| Number of spks: {len(spk_map)}, spk_map: {spk_map}")
json.dump(spk_map, open(self.spk_map_fn, 'w'), ensure_ascii=False)
return spk_map
@classmethod
def build_mfa_inputs(cls, item, mfa_input_dir, mfa_group, wav_processed_tmp, preprocess_args):
item_name = item['item_name']
wav_align_fn = item['wav_align_fn']
ph_gb_word = item['ph_gb_word']
ext = os.path.splitext(wav_align_fn)[1]
mfa_input_group_dir = f'{mfa_input_dir}/{mfa_group}'
os.makedirs(mfa_input_group_dir, exist_ok=True)
new_wav_align_fn = f"{mfa_input_group_dir}/{item_name}{ext}"
move_link_func = move_file if os.path.dirname(wav_align_fn) == wav_processed_tmp else link_file
move_link_func(wav_align_fn, new_wav_align_fn)
ph_gb_word_nosil = " ".join(["_".join([p for p in w.split("_") if not is_sil_phoneme(p)])
for w in ph_gb_word.split(" ") if not is_sil_phoneme(w)])
with open(f'{mfa_input_group_dir}/{item_name}.lab', 'w') as f_txt:
f_txt.write(ph_gb_word_nosil)
return ph_gb_word_nosil, new_wav_align_fn
def load_spk_map(self, base_dir):
spk_map_fn = f"{base_dir}/spk_map.json"
spk_map = json.load(open(spk_map_fn, 'r'))
return spk_map
def load_dict(self, base_dir):
ph_encoder = build_token_encoder(f'{base_dir}/phone_set.json')
return ph_encoder
@property
def meta_csv_filename(self):
return 'metadata'
@property
def wav_processed_dirname(self):
return 'wav_processed'