Spaces:
Runtime error
Runtime error
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from modules.FastDiff.module.util import calc_noise_scale_embedding | |
def swish(x): | |
return x * torch.sigmoid(x) | |
# dilated conv layer with kaiming_normal initialization | |
# from https://github.com/ksw0306/FloWaveNet/blob/master/modules.py | |
class Conv(nn.Module): | |
def __init__(self, in_channels, out_channels, kernel_size=3, dilation=1): | |
super(Conv, self).__init__() | |
self.padding = dilation * (kernel_size - 1) // 2 | |
self.conv = nn.Conv1d(in_channels, out_channels, kernel_size, dilation=dilation, padding=self.padding) | |
self.conv = nn.utils.weight_norm(self.conv) | |
nn.init.kaiming_normal_(self.conv.weight) | |
def forward(self, x): | |
out = self.conv(x) | |
return out | |
# conv1x1 layer with zero initialization | |
# from https://github.com/ksw0306/FloWaveNet/blob/master/modules.py but the scale parameter is removed | |
class ZeroConv1d(nn.Module): | |
def __init__(self, in_channel, out_channel): | |
super(ZeroConv1d, self).__init__() | |
self.conv = nn.Conv1d(in_channel, out_channel, kernel_size=1, padding=0) | |
self.conv.weight.data.zero_() | |
self.conv.bias.data.zero_() | |
def forward(self, x): | |
out = self.conv(x) | |
return out | |
# every residual block (named residual layer in paper) | |
# contains one noncausal dilated conv | |
class Residual_block(nn.Module): | |
def __init__(self, res_channels, skip_channels, dilation, | |
noise_scale_embed_dim_out, multiband=True): | |
super(Residual_block, self).__init__() | |
self.res_channels = res_channels | |
# the layer-specific fc for noise scale embedding | |
self.fc_t = nn.Linear(noise_scale_embed_dim_out, self.res_channels) | |
# dilated conv layer | |
self.dilated_conv_layer = Conv(self.res_channels, 2 * self.res_channels, kernel_size=3, dilation=dilation) | |
# add mel spectrogram upsampler and conditioner conv1x1 layer | |
self.upsample_conv2d = torch.nn.ModuleList() | |
if multiband is True: | |
params = 8 | |
else: | |
params = 16 | |
for s in [params, params]: ####### Very Important!!!!! ####### | |
conv_trans2d = torch.nn.ConvTranspose2d(1, 1, (3, 2 * s), padding=(1, s // 2), stride=(1, s)) | |
conv_trans2d = torch.nn.utils.weight_norm(conv_trans2d) | |
torch.nn.init.kaiming_normal_(conv_trans2d.weight) | |
self.upsample_conv2d.append(conv_trans2d) | |
self.mel_conv = Conv(80, 2 * self.res_channels, kernel_size=1) # 80 is mel bands | |
# residual conv1x1 layer, connect to next residual layer | |
self.res_conv = nn.Conv1d(res_channels, res_channels, kernel_size=1) | |
self.res_conv = nn.utils.weight_norm(self.res_conv) | |
nn.init.kaiming_normal_(self.res_conv.weight) | |
# skip conv1x1 layer, add to all skip outputs through skip connections | |
self.skip_conv = nn.Conv1d(res_channels, skip_channels, kernel_size=1) | |
self.skip_conv = nn.utils.weight_norm(self.skip_conv) | |
nn.init.kaiming_normal_(self.skip_conv.weight) | |
def forward(self, input_data): | |
x, mel_spec, noise_scale_embed = input_data | |
h = x | |
B, C, L = x.shape # B, res_channels, L | |
assert C == self.res_channels | |
# add in noise scale embedding | |
part_t = self.fc_t(noise_scale_embed) | |
part_t = part_t.view([B, self.res_channels, 1]) | |
h += part_t | |
# dilated conv layer | |
h = self.dilated_conv_layer(h) | |
# add mel spectrogram as (local) conditioner | |
assert mel_spec is not None | |
# Upsample spectrogram to size of audio | |
mel_spec = torch.unsqueeze(mel_spec, dim=1) # (B, 1, 80, T') | |
mel_spec = F.leaky_relu(self.upsample_conv2d[0](mel_spec), 0.4) | |
mel_spec = F.leaky_relu(self.upsample_conv2d[1](mel_spec), 0.4) | |
mel_spec = torch.squeeze(mel_spec, dim=1) | |
assert(mel_spec.size(2) >= L) | |
if mel_spec.size(2) > L: | |
mel_spec = mel_spec[:, :, :L] | |
mel_spec = self.mel_conv(mel_spec) | |
h += mel_spec | |
# gated-tanh nonlinearity | |
out = torch.tanh(h[:,:self.res_channels,:]) * torch.sigmoid(h[:,self.res_channels:,:]) | |
# residual and skip outputs | |
res = self.res_conv(out) | |
assert x.shape == res.shape | |
skip = self.skip_conv(out) | |
return (x + res) * math.sqrt(0.5), skip # normalize for training stability | |
class Residual_group(nn.Module): | |
def __init__(self, res_channels, skip_channels, num_res_layers, dilation_cycle, | |
noise_scale_embed_dim_in, | |
noise_scale_embed_dim_mid, | |
noise_scale_embed_dim_out, multiband): | |
super(Residual_group, self).__init__() | |
self.num_res_layers = num_res_layers | |
self.noise_scale_embed_dim_in = noise_scale_embed_dim_in | |
# the shared two fc layers for noise scale embedding | |
self.fc_t1 = nn.Linear(noise_scale_embed_dim_in, noise_scale_embed_dim_mid) | |
self.fc_t2 = nn.Linear(noise_scale_embed_dim_mid, noise_scale_embed_dim_out) | |
# stack all residual blocks with dilations 1, 2, ... , 512, ... , 1, 2, ..., 512 | |
self.residual_blocks = nn.ModuleList() | |
for n in range(self.num_res_layers): | |
self.residual_blocks.append(Residual_block(res_channels, skip_channels, | |
dilation=2 ** (n % dilation_cycle), | |
noise_scale_embed_dim_out=noise_scale_embed_dim_out, multiband=multiband)) | |
def forward(self, input_data): | |
x, mel_spectrogram, noise_scales = input_data | |
# embed noise scale | |
noise_scale_embed = calc_noise_scale_embedding(noise_scales, self.noise_scale_embed_dim_in) | |
noise_scale_embed = swish(self.fc_t1(noise_scale_embed)) | |
noise_scale_embed = swish(self.fc_t2(noise_scale_embed)) | |
# pass all residual layers | |
h = x | |
skip = 0 | |
for n in range(self.num_res_layers): | |
h, skip_n = self.residual_blocks[n]((h, mel_spectrogram, noise_scale_embed)) # use the output from last residual layer | |
skip += skip_n # accumulate all skip outputs | |
return skip * math.sqrt(1.0 / self.num_res_layers) # normalize for training stability | |
class WaveNet_vocoder(nn.Module): | |
def __init__(self, in_channels, res_channels, skip_channels, out_channels, | |
num_res_layers, dilation_cycle, | |
noise_scale_embed_dim_in, | |
noise_scale_embed_dim_mid, | |
noise_scale_embed_dim_out, multiband): | |
super(WaveNet_vocoder, self).__init__() | |
# initial conv1x1 with relu | |
self.init_conv = nn.Sequential(Conv(in_channels, res_channels, kernel_size=1), nn.ReLU()) | |
# all residual layers | |
self.residual_layer = Residual_group(res_channels=res_channels, | |
skip_channels=skip_channels, | |
num_res_layers=num_res_layers, | |
dilation_cycle=dilation_cycle, | |
noise_scale_embed_dim_in=noise_scale_embed_dim_in, | |
noise_scale_embed_dim_mid=noise_scale_embed_dim_mid, | |
noise_scale_embed_dim_out=noise_scale_embed_dim_out, multiband=multiband) | |
# final conv1x1 -> relu -> zeroconv1x1 | |
self.final_conv = nn.Sequential(Conv(skip_channels, skip_channels, kernel_size=1), | |
nn.ReLU(), | |
ZeroConv1d(skip_channels, out_channels)) | |
def forward(self, input_data): | |
audio, mel_spectrogram, noise_scales = input_data # b x band x T, b x 80 x T', b x 1 | |
x = audio | |
x = self.init_conv(x) | |
x = self.residual_layer((x, mel_spectrogram, noise_scales)) | |
x = self.final_conv(x) | |
return x | |