ProDiff / modules /commons /common_layers.py
Rongjiehuang's picture
init
64e7f2f
import math
import torch
from torch import nn
from torch.nn import Parameter
import torch.onnx.operators
import torch.nn.functional as F
from utils.tts_utils import make_positions, softmax, get_incremental_state, set_incremental_state
class Reshape(nn.Module):
def __init__(self, *args):
super(Reshape, self).__init__()
self.shape = args
def forward(self, x):
return x.view(self.shape)
class Permute(nn.Module):
def __init__(self, *args):
super(Permute, self).__init__()
self.args = args
def forward(self, x):
return x.permute(self.args)
class LinearNorm(torch.nn.Module):
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
super(LinearNorm, self).__init__()
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)
torch.nn.init.xavier_uniform_(
self.linear_layer.weight,
gain=torch.nn.init.calculate_gain(w_init_gain))
def forward(self, x):
return self.linear_layer(x)
class ConvNorm(torch.nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1,
padding=None, dilation=1, bias=True, w_init_gain='linear'):
super(ConvNorm, self).__init__()
if padding is None:
assert (kernel_size % 2 == 1)
padding = int(dilation * (kernel_size - 1) / 2)
self.conv = torch.nn.Conv1d(in_channels, out_channels,
kernel_size=kernel_size, stride=stride,
padding=padding, dilation=dilation,
bias=bias)
torch.nn.init.xavier_uniform_(
self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain))
def forward(self, signal):
conv_signal = self.conv(signal)
return conv_signal
def Embedding(num_embeddings, embedding_dim, padding_idx=None):
m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx)
nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5)
if padding_idx is not None:
nn.init.constant_(m.weight[padding_idx], 0)
return m
class GroupNorm1DTBC(nn.GroupNorm):
def forward(self, input):
return super(GroupNorm1DTBC, self).forward(input.permute(1, 2, 0)).permute(2, 0, 1)
def LayerNorm(normalized_shape, eps=1e-5, elementwise_affine=True, export=False):
if not export and torch.cuda.is_available():
try:
from apex.normalization import FusedLayerNorm
return FusedLayerNorm(normalized_shape, eps, elementwise_affine)
except ImportError:
pass
return torch.nn.LayerNorm(normalized_shape, eps, elementwise_affine)
def Linear(in_features, out_features, bias=True):
m = nn.Linear(in_features, out_features, bias)
nn.init.xavier_uniform_(m.weight)
if bias:
nn.init.constant_(m.bias, 0.)
return m
class SinusoidalPositionalEmbedding(nn.Module):
"""This module produces sinusoidal positional embeddings of any length.
Padding symbols are ignored.
"""
def __init__(self, embedding_dim, padding_idx, init_size=1024):
super().__init__()
self.embedding_dim = embedding_dim
self.padding_idx = padding_idx
self.weights = SinusoidalPositionalEmbedding.get_embedding(
init_size,
embedding_dim,
padding_idx,
)
self.register_buffer('_float_tensor', torch.FloatTensor(1))
@staticmethod
def get_embedding(num_embeddings, embedding_dim, padding_idx=None):
"""Build sinusoidal embeddings.
This matches the implementation in tensor2tensor, but differs slightly
from the description in Section 3.5 of "Attention Is All You Need".
"""
half_dim = embedding_dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb)
emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0)
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1)
if embedding_dim % 2 == 1:
# zero pad
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
if padding_idx is not None:
emb[padding_idx, :] = 0
return emb
def forward(self, input, incremental_state=None, timestep=None, positions=None, **kwargs):
"""Input is expected to be of size [bsz x seqlen]."""
bsz, seq_len = input.shape[:2]
max_pos = self.padding_idx + 1 + seq_len
if self.weights is None or max_pos > self.weights.size(0):
# recompute/expand embeddings if needed
self.weights = SinusoidalPositionalEmbedding.get_embedding(
max_pos,
self.embedding_dim,
self.padding_idx,
)
self.weights = self.weights.to(self._float_tensor)
if incremental_state is not None:
# positions is the same for every token when decoding a single step
pos = timestep.view(-1)[0] + 1 if timestep is not None else seq_len
return self.weights[self.padding_idx + pos, :].expand(bsz, 1, -1)
positions = make_positions(input, self.padding_idx) if positions is None else positions
return self.weights.index_select(0, positions.view(-1)).view(bsz, seq_len, -1).detach()
def max_positions(self):
"""Maximum number of supported positions."""
return int(1e5) # an arbitrary large number
class ConvTBC(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, padding=0):
super(ConvTBC, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.padding = padding
self.weight = torch.nn.Parameter(torch.Tensor(
self.kernel_size, in_channels, out_channels))
self.bias = torch.nn.Parameter(torch.Tensor(out_channels))
def forward(self, input):
return torch.conv_tbc(input.contiguous(), self.weight, self.bias, self.padding)
class MultiheadAttention(nn.Module):
def __init__(self, embed_dim, num_heads, kdim=None, vdim=None, dropout=0., bias=True,
add_bias_kv=False, add_zero_attn=False, self_attention=False,
encoder_decoder_attention=False):
super().__init__()
self.embed_dim = embed_dim
self.kdim = kdim if kdim is not None else embed_dim
self.vdim = vdim if vdim is not None else embed_dim
self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
self.scaling = self.head_dim ** -0.5
self.self_attention = self_attention
self.encoder_decoder_attention = encoder_decoder_attention
assert not self.self_attention or self.qkv_same_dim, 'Self-attention requires query, key and ' \
'value to be of the same size'
if self.qkv_same_dim:
self.in_proj_weight = Parameter(torch.Tensor(3 * embed_dim, embed_dim))
else:
self.k_proj_weight = Parameter(torch.Tensor(embed_dim, self.kdim))
self.v_proj_weight = Parameter(torch.Tensor(embed_dim, self.vdim))
self.q_proj_weight = Parameter(torch.Tensor(embed_dim, embed_dim))
if bias:
self.in_proj_bias = Parameter(torch.Tensor(3 * embed_dim))
else:
self.register_parameter('in_proj_bias', None)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
if add_bias_kv:
self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim))
self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim))
else:
self.bias_k = self.bias_v = None
self.add_zero_attn = add_zero_attn
self.reset_parameters()
self.enable_torch_version = False
if hasattr(F, "multi_head_attention_forward"):
self.enable_torch_version = True
else:
self.enable_torch_version = False
self.last_attn_probs = None
def reset_parameters(self):
if self.qkv_same_dim:
nn.init.xavier_uniform_(self.in_proj_weight)
else:
nn.init.xavier_uniform_(self.k_proj_weight)
nn.init.xavier_uniform_(self.v_proj_weight)
nn.init.xavier_uniform_(self.q_proj_weight)
nn.init.xavier_uniform_(self.out_proj.weight)
if self.in_proj_bias is not None:
nn.init.constant_(self.in_proj_bias, 0.)
nn.init.constant_(self.out_proj.bias, 0.)
if self.bias_k is not None:
nn.init.xavier_normal_(self.bias_k)
if self.bias_v is not None:
nn.init.xavier_normal_(self.bias_v)
def forward(
self,
query, key, value,
key_padding_mask=None,
incremental_state=None,
need_weights=True,
static_kv=False,
attn_mask=None,
before_softmax=False,
need_head_weights=False,
enc_dec_attn_constraint_mask=None,
reset_attn_weight=None
):
"""Input shape: Time x Batch x Channel
Args:
key_padding_mask (ByteTensor, optional): mask to exclude
keys that are pads, of shape `(batch, src_len)`, where
padding elements are indicated by 1s.
need_weights (bool, optional): return the attention weights,
averaged over heads (default: False).
attn_mask (ByteTensor, optional): typically used to
implement causal attention, where the mask prevents the
attention from looking forward in time (default: None).
before_softmax (bool, optional): return the raw attention
weights and values before the attention softmax.
need_head_weights (bool, optional): return the attention
weights for each head. Implies *need_weights*. Default:
return the average attention weights over all heads.
"""
if need_head_weights:
need_weights = True
tgt_len, bsz, embed_dim = query.size()
assert embed_dim == self.embed_dim
assert list(query.size()) == [tgt_len, bsz, embed_dim]
if self.enable_torch_version and incremental_state is None and not static_kv and reset_attn_weight is None:
if self.qkv_same_dim:
return F.multi_head_attention_forward(query, key, value,
self.embed_dim, self.num_heads,
self.in_proj_weight,
self.in_proj_bias, self.bias_k, self.bias_v,
self.add_zero_attn, self.dropout,
self.out_proj.weight, self.out_proj.bias,
self.training, key_padding_mask, need_weights,
attn_mask)
else:
return F.multi_head_attention_forward(query, key, value,
self.embed_dim, self.num_heads,
torch.empty([0]),
self.in_proj_bias, self.bias_k, self.bias_v,
self.add_zero_attn, self.dropout,
self.out_proj.weight, self.out_proj.bias,
self.training, key_padding_mask, need_weights,
attn_mask, use_separate_proj_weight=True,
q_proj_weight=self.q_proj_weight,
k_proj_weight=self.k_proj_weight,
v_proj_weight=self.v_proj_weight)
if incremental_state is not None:
saved_state = self._get_input_buffer(incremental_state)
if 'prev_key' in saved_state:
# previous time steps are cached - no need to recompute
# key and value if they are static
if static_kv:
assert self.encoder_decoder_attention and not self.self_attention
key = value = None
else:
saved_state = None
if self.self_attention:
# self-attention
q, k, v = self.in_proj_qkv(query)
elif self.encoder_decoder_attention:
# encoder-decoder attention
q = self.in_proj_q(query)
if key is None:
assert value is None
k = v = None
else:
k = self.in_proj_k(key)
v = self.in_proj_v(key)
else:
q = self.in_proj_q(query)
k = self.in_proj_k(key)
v = self.in_proj_v(value)
q *= self.scaling
if self.bias_k is not None:
assert self.bias_v is not None
k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)])
v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)])
if attn_mask is not None:
attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1)
if key_padding_mask is not None:
key_padding_mask = torch.cat(
[key_padding_mask, key_padding_mask.new_zeros(key_padding_mask.size(0), 1)], dim=1)
q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim).transpose(0, 1)
if k is not None:
k = k.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1)
if v is not None:
v = v.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1)
if saved_state is not None:
# saved states are stored with shape (bsz, num_heads, seq_len, head_dim)
if 'prev_key' in saved_state:
prev_key = saved_state['prev_key'].view(bsz * self.num_heads, -1, self.head_dim)
if static_kv:
k = prev_key
else:
k = torch.cat((prev_key, k), dim=1)
if 'prev_value' in saved_state:
prev_value = saved_state['prev_value'].view(bsz * self.num_heads, -1, self.head_dim)
if static_kv:
v = prev_value
else:
v = torch.cat((prev_value, v), dim=1)
if 'prev_key_padding_mask' in saved_state and saved_state['prev_key_padding_mask'] is not None:
prev_key_padding_mask = saved_state['prev_key_padding_mask']
if static_kv:
key_padding_mask = prev_key_padding_mask
else:
key_padding_mask = torch.cat((prev_key_padding_mask, key_padding_mask), dim=1)
saved_state['prev_key'] = k.view(bsz, self.num_heads, -1, self.head_dim)
saved_state['prev_value'] = v.view(bsz, self.num_heads, -1, self.head_dim)
saved_state['prev_key_padding_mask'] = key_padding_mask
self._set_input_buffer(incremental_state, saved_state)
src_len = k.size(1)
# This is part of a workaround to get around fork/join parallelism
# not supporting Optional types.
if key_padding_mask is not None and key_padding_mask.shape == torch.Size([]):
key_padding_mask = None
if key_padding_mask is not None:
assert key_padding_mask.size(0) == bsz
assert key_padding_mask.size(1) == src_len
if self.add_zero_attn:
src_len += 1
k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1)
v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1)
if attn_mask is not None:
attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1)
if key_padding_mask is not None:
key_padding_mask = torch.cat(
[key_padding_mask, torch.zeros(key_padding_mask.size(0), 1).type_as(key_padding_mask)], dim=1)
attn_weights = torch.bmm(q, k.transpose(1, 2))
attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz)
assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len]
if attn_mask is not None:
if len(attn_mask.shape) == 2:
attn_mask = attn_mask.unsqueeze(0)
elif len(attn_mask.shape) == 3:
attn_mask = attn_mask[:, None].repeat([1, self.num_heads, 1, 1]).reshape(
bsz * self.num_heads, tgt_len, src_len)
attn_weights = attn_weights + attn_mask
if enc_dec_attn_constraint_mask is not None: # bs x head x L_kv
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.masked_fill(
enc_dec_attn_constraint_mask.unsqueeze(2).bool(),
-1e8,
)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if key_padding_mask is not None:
# don't attend to padding symbols
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.masked_fill(
key_padding_mask.unsqueeze(1).unsqueeze(2),
-1e8,
)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_logits = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
if before_softmax:
return attn_weights, v
attn_weights_float = softmax(attn_weights, dim=-1)
attn_weights = attn_weights_float.type_as(attn_weights)
attn_probs = F.dropout(attn_weights_float.type_as(attn_weights), p=self.dropout, training=self.training)
if reset_attn_weight is not None:
if reset_attn_weight:
self.last_attn_probs = attn_probs.detach()
else:
assert self.last_attn_probs is not None
attn_probs = self.last_attn_probs
attn = torch.bmm(attn_probs, v)
assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim]
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
attn = self.out_proj(attn)
if need_weights:
attn_weights = attn_weights_float.view(bsz, self.num_heads, tgt_len, src_len).transpose(1, 0)
if not need_head_weights:
# average attention weights over heads
attn_weights = attn_weights.mean(dim=0)
else:
attn_weights = None
return attn, (attn_weights, attn_logits)
def in_proj_qkv(self, query):
return self._in_proj(query).chunk(3, dim=-1)
def in_proj_q(self, query):
if self.qkv_same_dim:
return self._in_proj(query, end=self.embed_dim)
else:
bias = self.in_proj_bias
if bias is not None:
bias = bias[:self.embed_dim]
return F.linear(query, self.q_proj_weight, bias)
def in_proj_k(self, key):
if self.qkv_same_dim:
return self._in_proj(key, start=self.embed_dim, end=2 * self.embed_dim)
else:
weight = self.k_proj_weight
bias = self.in_proj_bias
if bias is not None:
bias = bias[self.embed_dim:2 * self.embed_dim]
return F.linear(key, weight, bias)
def in_proj_v(self, value):
if self.qkv_same_dim:
return self._in_proj(value, start=2 * self.embed_dim)
else:
weight = self.v_proj_weight
bias = self.in_proj_bias
if bias is not None:
bias = bias[2 * self.embed_dim:]
return F.linear(value, weight, bias)
def _in_proj(self, input, start=0, end=None):
weight = self.in_proj_weight
bias = self.in_proj_bias
weight = weight[start:end, :]
if bias is not None:
bias = bias[start:end]
return F.linear(input, weight, bias)
def _get_input_buffer(self, incremental_state):
return get_incremental_state(
self,
incremental_state,
'attn_state',
) or {}
def _set_input_buffer(self, incremental_state, buffer):
set_incremental_state(
self,
incremental_state,
'attn_state',
buffer,
)
def apply_sparse_mask(self, attn_weights, tgt_len, src_len, bsz):
return attn_weights
def clear_buffer(self, incremental_state=None):
if incremental_state is not None:
saved_state = self._get_input_buffer(incremental_state)
if 'prev_key' in saved_state:
del saved_state['prev_key']
if 'prev_value' in saved_state:
del saved_state['prev_value']
self._set_input_buffer(incremental_state, saved_state)
class Swish(torch.autograd.Function):
@staticmethod
def forward(ctx, i):
result = i * torch.sigmoid(i)
ctx.save_for_backward(i)
return result
@staticmethod
def backward(ctx, grad_output):
i = ctx.saved_variables[0]
sigmoid_i = torch.sigmoid(i)
return grad_output * (sigmoid_i * (1 + i * (1 - sigmoid_i)))
class CustomSwish(nn.Module):
def forward(self, input_tensor):
return Swish.apply(input_tensor)
class TransformerFFNLayer(nn.Module):
def __init__(self, hidden_size, filter_size, padding="SAME", kernel_size=1, dropout=0., act='gelu'):
super().__init__()
self.kernel_size = kernel_size
self.dropout = dropout
self.act = act
if padding == 'SAME':
self.ffn_1 = nn.Conv1d(hidden_size, filter_size, kernel_size, padding=kernel_size // 2)
elif padding == 'LEFT':
self.ffn_1 = nn.Sequential(
nn.ConstantPad1d((kernel_size - 1, 0), 0.0),
nn.Conv1d(hidden_size, filter_size, kernel_size)
)
self.ffn_2 = Linear(filter_size, hidden_size)
if self.act == 'swish':
self.swish_fn = CustomSwish()
def forward(self, x, incremental_state=None):
# x: T x B x C
if incremental_state is not None:
saved_state = self._get_input_buffer(incremental_state)
if 'prev_input' in saved_state:
prev_input = saved_state['prev_input']
x = torch.cat((prev_input, x), dim=0)
x = x[-self.kernel_size:]
saved_state['prev_input'] = x
self._set_input_buffer(incremental_state, saved_state)
x = self.ffn_1(x.permute(1, 2, 0)).permute(2, 0, 1)
x = x * self.kernel_size ** -0.5
if incremental_state is not None:
x = x[-1:]
if self.act == 'gelu':
x = F.gelu(x)
if self.act == 'relu':
x = F.relu(x)
if self.act == 'swish':
x = self.swish_fn(x)
x = F.dropout(x, self.dropout, training=self.training)
x = self.ffn_2(x)
return x
def _get_input_buffer(self, incremental_state):
return get_incremental_state(
self,
incremental_state,
'f',
) or {}
def _set_input_buffer(self, incremental_state, buffer):
set_incremental_state(
self,
incremental_state,
'f',
buffer,
)
def clear_buffer(self, incremental_state):
if incremental_state is not None:
saved_state = self._get_input_buffer(incremental_state)
if 'prev_input' in saved_state:
del saved_state['prev_input']
self._set_input_buffer(incremental_state, saved_state)
class BatchNorm1dTBC(nn.Module):
def __init__(self, c):
super(BatchNorm1dTBC, self).__init__()
self.bn = nn.BatchNorm1d(c)
def forward(self, x):
"""
:param x: [T, B, C]
:return: [T, B, C]
"""
x = x.permute(1, 2, 0) # [B, C, T]
x = self.bn(x) # [B, C, T]
x = x.permute(2, 0, 1) # [T, B, C]
return x
class EncSALayer(nn.Module):
def __init__(self, c, num_heads, dropout, attention_dropout=0.1,
relu_dropout=0.1, kernel_size=9, padding='SAME', norm='ln', act='gelu'):
super().__init__()
self.c = c
self.dropout = dropout
self.num_heads = num_heads
if num_heads > 0:
if norm == 'ln':
self.layer_norm1 = LayerNorm(c)
elif norm == 'bn':
self.layer_norm1 = BatchNorm1dTBC(c)
elif norm == 'gn':
self.layer_norm1 = GroupNorm1DTBC(8, c)
self.self_attn = MultiheadAttention(
self.c, num_heads, self_attention=True, dropout=attention_dropout, bias=False)
if norm == 'ln':
self.layer_norm2 = LayerNorm(c)
elif norm == 'bn':
self.layer_norm2 = BatchNorm1dTBC(c)
elif norm == 'gn':
self.layer_norm2 = GroupNorm1DTBC(8, c)
self.ffn = TransformerFFNLayer(
c, 4 * c, kernel_size=kernel_size, dropout=relu_dropout, padding=padding, act=act)
def forward(self, x, encoder_padding_mask=None, **kwargs):
layer_norm_training = kwargs.get('layer_norm_training', None)
if layer_norm_training is not None:
self.layer_norm1.training = layer_norm_training
self.layer_norm2.training = layer_norm_training
if self.num_heads > 0:
residual = x
x = self.layer_norm1(x)
x, _, = self.self_attn(
query=x,
key=x,
value=x,
key_padding_mask=encoder_padding_mask
)
x = F.dropout(x, self.dropout, training=self.training)
x = residual + x
x = x * (1 - encoder_padding_mask.float()).transpose(0, 1)[..., None]
residual = x
x = self.layer_norm2(x)
x = self.ffn(x)
x = F.dropout(x, self.dropout, training=self.training)
x = residual + x
x = x * (1 - encoder_padding_mask.float()).transpose(0, 1)[..., None]
return x
class DecSALayer(nn.Module):
def __init__(self, c, num_heads, dropout, attention_dropout=0.1, relu_dropout=0.1,
kernel_size=9, act='gelu', norm='ln'):
super().__init__()
self.c = c
self.dropout = dropout
if norm == 'ln':
self.layer_norm1 = LayerNorm(c)
elif norm == 'gn':
self.layer_norm1 = GroupNorm1DTBC(8, c)
self.self_attn = MultiheadAttention(
c, num_heads, self_attention=True, dropout=attention_dropout, bias=False
)
if norm == 'ln':
self.layer_norm2 = LayerNorm(c)
elif norm == 'gn':
self.layer_norm2 = GroupNorm1DTBC(8, c)
self.encoder_attn = MultiheadAttention(
c, num_heads, encoder_decoder_attention=True, dropout=attention_dropout, bias=False,
)
if norm == 'ln':
self.layer_norm3 = LayerNorm(c)
elif norm == 'gn':
self.layer_norm3 = GroupNorm1DTBC(8, c)
self.ffn = TransformerFFNLayer(
c, 4 * c, padding='LEFT', kernel_size=kernel_size, dropout=relu_dropout, act=act)
def forward(
self,
x,
encoder_out=None,
encoder_padding_mask=None,
incremental_state=None,
self_attn_mask=None,
self_attn_padding_mask=None,
attn_out=None,
reset_attn_weight=None,
**kwargs,
):
layer_norm_training = kwargs.get('layer_norm_training', None)
if layer_norm_training is not None:
self.layer_norm1.training = layer_norm_training
self.layer_norm2.training = layer_norm_training
self.layer_norm3.training = layer_norm_training
residual = x
x = self.layer_norm1(x)
x, _ = self.self_attn(
query=x,
key=x,
value=x,
key_padding_mask=self_attn_padding_mask,
incremental_state=incremental_state,
attn_mask=self_attn_mask
)
x = F.dropout(x, self.dropout, training=self.training)
x = residual + x
attn_logits = None
if encoder_out is not None or attn_out is not None:
residual = x
x = self.layer_norm2(x)
if encoder_out is not None:
x, attn = self.encoder_attn(
query=x,
key=encoder_out,
value=encoder_out,
key_padding_mask=encoder_padding_mask,
incremental_state=incremental_state,
static_kv=True,
enc_dec_attn_constraint_mask=get_incremental_state(self, incremental_state,
'enc_dec_attn_constraint_mask'),
reset_attn_weight=reset_attn_weight
)
attn_logits = attn[1]
elif attn_out is not None:
x = self.encoder_attn.in_proj_v(attn_out)
if encoder_out is not None or attn_out is not None:
x = F.dropout(x, self.dropout, training=self.training)
x = residual + x
residual = x
x = self.layer_norm3(x)
x = self.ffn(x, incremental_state=incremental_state)
x = F.dropout(x, self.dropout, training=self.training)
x = residual + x
return x, attn_logits
def clear_buffer(self, input, encoder_out=None, encoder_padding_mask=None, incremental_state=None):
self.encoder_attn.clear_buffer(incremental_state)
self.ffn.clear_buffer(incremental_state)
def set_buffer(self, name, tensor, incremental_state):
return set_incremental_state(self, incremental_state, name, tensor)
class ConvBlock(nn.Module):
def __init__(self, idim=80, n_chans=256, kernel_size=3, stride=1, norm='gn', dropout=0):
super().__init__()
self.conv = ConvNorm(idim, n_chans, kernel_size, stride=stride)
self.norm = norm
if self.norm == 'bn':
self.norm = nn.BatchNorm1d(n_chans)
elif self.norm == 'in':
self.norm = nn.InstanceNorm1d(n_chans, affine=True)
elif self.norm == 'gn':
self.norm = nn.GroupNorm(n_chans // 16, n_chans)
elif self.norm == 'ln':
self.norm = LayerNorm(n_chans // 16, n_chans)
elif self.norm == 'wn':
self.conv = torch.nn.utils.weight_norm(self.conv.conv)
self.dropout = nn.Dropout(dropout)
self.relu = nn.ReLU()
def forward(self, x):
"""
:param x: [B, C, T]
:return: [B, C, T]
"""
x = self.conv(x)
if not isinstance(self.norm, str):
if self.norm == 'none':
pass
elif self.norm == 'ln':
x = self.norm(x.transpose(1, 2)).transpose(1, 2)
else:
x = self.norm(x)
x = self.relu(x)
x = self.dropout(x)
return x
class ConvStacks(nn.Module):
def __init__(self, idim=80, n_layers=5, n_chans=256, odim=32, kernel_size=5, norm='gn',
dropout=0, strides=None, res=True):
super().__init__()
self.conv = torch.nn.ModuleList()
self.kernel_size = kernel_size
self.res = res
self.in_proj = Linear(idim, n_chans)
if strides is None:
strides = [1] * n_layers
else:
assert len(strides) == n_layers
for idx in range(n_layers):
self.conv.append(ConvBlock(
n_chans, n_chans, kernel_size, stride=strides[idx], norm=norm, dropout=dropout))
self.out_proj = Linear(n_chans, odim)
def forward(self, x, return_hiddens=False):
"""
:param x: [B, T, H]
:return: [B, T, H]
"""
x = self.in_proj(x)
x = x.transpose(1, -1) # (B, idim, Tmax)
hiddens = []
for f in self.conv:
x_ = f(x)
x = x + x_ if self.res else x_ # (B, C, Tmax)
hiddens.append(x)
x = x.transpose(1, -1)
x = self.out_proj(x) # (B, Tmax, H)
if return_hiddens:
hiddens = torch.stack(hiddens, 1) # [B, L, C, T]
return x, hiddens
return x
class ConvGlobalStacks(nn.Module):
def __init__(self, idim=80, n_layers=5, n_chans=256, odim=32, kernel_size=5, norm='gn', dropout=0,
strides=[2, 2, 2, 2, 2]):
super().__init__()
self.conv = torch.nn.ModuleList()
self.pooling = torch.nn.ModuleList()
self.kernel_size = kernel_size
self.in_proj = Linear(idim, n_chans)
for idx in range(n_layers):
self.conv.append(ConvBlock(n_chans, n_chans, kernel_size, stride=strides[idx],
norm=norm, dropout=dropout))
self.pooling.append(nn.MaxPool1d(strides[idx]))
self.out_proj = Linear(n_chans, odim)
def forward(self, x):
"""
:param x: [B, T, H]
:return: [B, T, H]
"""
x = self.in_proj(x)
x = x.transpose(1, -1) # (B, idim, Tmax)
for f, p in zip(self.conv, self.pooling):
x = f(x) # (B, C, T)
x = x.transpose(1, -1)
x = self.out_proj(x.mean(1)) # (B, H)
return x
class ConvLSTMStacks(nn.Module):
def __init__(self, idim=80, n_layers=5, n_chans=256, odim=32, kernel_size=3, norm='gn', dropout=0):
super().__init__()
self.conv = torch.nn.ModuleList()
self.kernel_size = kernel_size
self.in_proj = Linear(idim, n_chans)
for idx in range(n_layers):
self.conv.append(ConvBlock(n_chans, n_chans, kernel_size, stride=1, norm=norm, dropout=dropout))
self.lstm = nn.LSTM(n_chans, n_chans, 1, batch_first=True, bidirectional=True)
self.out_proj = Linear(n_chans * 2, odim)
def forward(self, x):
"""
:param x: [B, T, H]
:return: [B, T, H]
"""
x = self.in_proj(x)
x = x.transpose(1, -1) # (B, idim, Tmax)
for f in self.conv:
x = x + f(x) # (B, C, Tmax)
x = x.transpose(1, -1)
x, _ = self.lstm(x) # (B, Tmax, H*2)
x = self.out_proj(x) # (B, Tmax, H)
return x
class ResidualLayer(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, padding):
super(ResidualLayer, self).__init__()
self.conv1d_layer = nn.Sequential(nn.Conv1d(in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=1,
padding=padding),
nn.InstanceNorm1d(num_features=out_channels,
affine=True))
self.conv_layer_gates = nn.Sequential(nn.Conv1d(in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=1,
padding=padding),
nn.InstanceNorm1d(num_features=out_channels,
affine=True))
self.conv1d_out_layer = nn.Sequential(nn.Conv1d(in_channels=out_channels,
out_channels=in_channels,
kernel_size=kernel_size,
stride=1,
padding=padding),
nn.InstanceNorm1d(num_features=in_channels,
affine=True))
def forward(self, input):
"""
:param input: [B, H, T]
:return: input: [B, H, T]
"""
h1_norm = self.conv1d_layer(input)
h1_gates_norm = self.conv_layer_gates(input)
# GLU
h1_glu = h1_norm * torch.sigmoid(h1_gates_norm)
h2_norm = self.conv1d_out_layer(h1_glu)
return input + h2_norm
class ConvGLUStacks(nn.Module):
def __init__(self, idim=80, n_layers=3, n_chans=256, odim=32, kernel_size=5, dropout=0):
super().__init__()
self.convs = []
self.kernel_size = kernel_size
self.in_proj = Linear(idim, n_chans)
for idx in range(n_layers):
self.convs.append(
nn.Sequential(ResidualLayer(
n_chans, n_chans, kernel_size, kernel_size // 2),
nn.Dropout(dropout)
))
self.convs = nn.Sequential(*self.convs)
self.out_proj = Linear(n_chans, odim)
def forward(self, x):
"""
:param x: [B, T, H]
:return: [B, T, H]
"""
x = self.in_proj(x)
x = x.transpose(1, -1) # (B, idim, Tmax)
x = self.convs(x) # (B, C, Tmax)
x = x.transpose(1, -1)
x = self.out_proj(x) # (B, Tmax, H)
return x