Spaces:
Runtime error
Runtime error
import math | |
import torch | |
from torch import nn | |
from torch.nn import Parameter | |
import torch.onnx.operators | |
import torch.nn.functional as F | |
from utils.tts_utils import make_positions, softmax, get_incremental_state, set_incremental_state | |
class Reshape(nn.Module): | |
def __init__(self, *args): | |
super(Reshape, self).__init__() | |
self.shape = args | |
def forward(self, x): | |
return x.view(self.shape) | |
class Permute(nn.Module): | |
def __init__(self, *args): | |
super(Permute, self).__init__() | |
self.args = args | |
def forward(self, x): | |
return x.permute(self.args) | |
class LinearNorm(torch.nn.Module): | |
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'): | |
super(LinearNorm, self).__init__() | |
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias) | |
torch.nn.init.xavier_uniform_( | |
self.linear_layer.weight, | |
gain=torch.nn.init.calculate_gain(w_init_gain)) | |
def forward(self, x): | |
return self.linear_layer(x) | |
class ConvNorm(torch.nn.Module): | |
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, | |
padding=None, dilation=1, bias=True, w_init_gain='linear'): | |
super(ConvNorm, self).__init__() | |
if padding is None: | |
assert (kernel_size % 2 == 1) | |
padding = int(dilation * (kernel_size - 1) / 2) | |
self.conv = torch.nn.Conv1d(in_channels, out_channels, | |
kernel_size=kernel_size, stride=stride, | |
padding=padding, dilation=dilation, | |
bias=bias) | |
torch.nn.init.xavier_uniform_( | |
self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain)) | |
def forward(self, signal): | |
conv_signal = self.conv(signal) | |
return conv_signal | |
def Embedding(num_embeddings, embedding_dim, padding_idx=None): | |
m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx) | |
nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5) | |
if padding_idx is not None: | |
nn.init.constant_(m.weight[padding_idx], 0) | |
return m | |
class GroupNorm1DTBC(nn.GroupNorm): | |
def forward(self, input): | |
return super(GroupNorm1DTBC, self).forward(input.permute(1, 2, 0)).permute(2, 0, 1) | |
def LayerNorm(normalized_shape, eps=1e-5, elementwise_affine=True, export=False): | |
if not export and torch.cuda.is_available(): | |
try: | |
from apex.normalization import FusedLayerNorm | |
return FusedLayerNorm(normalized_shape, eps, elementwise_affine) | |
except ImportError: | |
pass | |
return torch.nn.LayerNorm(normalized_shape, eps, elementwise_affine) | |
def Linear(in_features, out_features, bias=True): | |
m = nn.Linear(in_features, out_features, bias) | |
nn.init.xavier_uniform_(m.weight) | |
if bias: | |
nn.init.constant_(m.bias, 0.) | |
return m | |
class SinusoidalPositionalEmbedding(nn.Module): | |
"""This module produces sinusoidal positional embeddings of any length. | |
Padding symbols are ignored. | |
""" | |
def __init__(self, embedding_dim, padding_idx, init_size=1024): | |
super().__init__() | |
self.embedding_dim = embedding_dim | |
self.padding_idx = padding_idx | |
self.weights = SinusoidalPositionalEmbedding.get_embedding( | |
init_size, | |
embedding_dim, | |
padding_idx, | |
) | |
self.register_buffer('_float_tensor', torch.FloatTensor(1)) | |
def get_embedding(num_embeddings, embedding_dim, padding_idx=None): | |
"""Build sinusoidal embeddings. | |
This matches the implementation in tensor2tensor, but differs slightly | |
from the description in Section 3.5 of "Attention Is All You Need". | |
""" | |
half_dim = embedding_dim // 2 | |
emb = math.log(10000) / (half_dim - 1) | |
emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb) | |
emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0) | |
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1) | |
if embedding_dim % 2 == 1: | |
# zero pad | |
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) | |
if padding_idx is not None: | |
emb[padding_idx, :] = 0 | |
return emb | |
def forward(self, input, incremental_state=None, timestep=None, positions=None, **kwargs): | |
"""Input is expected to be of size [bsz x seqlen].""" | |
bsz, seq_len = input.shape[:2] | |
max_pos = self.padding_idx + 1 + seq_len | |
if self.weights is None or max_pos > self.weights.size(0): | |
# recompute/expand embeddings if needed | |
self.weights = SinusoidalPositionalEmbedding.get_embedding( | |
max_pos, | |
self.embedding_dim, | |
self.padding_idx, | |
) | |
self.weights = self.weights.to(self._float_tensor) | |
if incremental_state is not None: | |
# positions is the same for every token when decoding a single step | |
pos = timestep.view(-1)[0] + 1 if timestep is not None else seq_len | |
return self.weights[self.padding_idx + pos, :].expand(bsz, 1, -1) | |
positions = make_positions(input, self.padding_idx) if positions is None else positions | |
return self.weights.index_select(0, positions.view(-1)).view(bsz, seq_len, -1).detach() | |
def max_positions(self): | |
"""Maximum number of supported positions.""" | |
return int(1e5) # an arbitrary large number | |
class ConvTBC(nn.Module): | |
def __init__(self, in_channels, out_channels, kernel_size, padding=0): | |
super(ConvTBC, self).__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.kernel_size = kernel_size | |
self.padding = padding | |
self.weight = torch.nn.Parameter(torch.Tensor( | |
self.kernel_size, in_channels, out_channels)) | |
self.bias = torch.nn.Parameter(torch.Tensor(out_channels)) | |
def forward(self, input): | |
return torch.conv_tbc(input.contiguous(), self.weight, self.bias, self.padding) | |
class MultiheadAttention(nn.Module): | |
def __init__(self, embed_dim, num_heads, kdim=None, vdim=None, dropout=0., bias=True, | |
add_bias_kv=False, add_zero_attn=False, self_attention=False, | |
encoder_decoder_attention=False): | |
super().__init__() | |
self.embed_dim = embed_dim | |
self.kdim = kdim if kdim is not None else embed_dim | |
self.vdim = vdim if vdim is not None else embed_dim | |
self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim | |
self.num_heads = num_heads | |
self.dropout = dropout | |
self.head_dim = embed_dim // num_heads | |
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" | |
self.scaling = self.head_dim ** -0.5 | |
self.self_attention = self_attention | |
self.encoder_decoder_attention = encoder_decoder_attention | |
assert not self.self_attention or self.qkv_same_dim, 'Self-attention requires query, key and ' \ | |
'value to be of the same size' | |
if self.qkv_same_dim: | |
self.in_proj_weight = Parameter(torch.Tensor(3 * embed_dim, embed_dim)) | |
else: | |
self.k_proj_weight = Parameter(torch.Tensor(embed_dim, self.kdim)) | |
self.v_proj_weight = Parameter(torch.Tensor(embed_dim, self.vdim)) | |
self.q_proj_weight = Parameter(torch.Tensor(embed_dim, embed_dim)) | |
if bias: | |
self.in_proj_bias = Parameter(torch.Tensor(3 * embed_dim)) | |
else: | |
self.register_parameter('in_proj_bias', None) | |
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
if add_bias_kv: | |
self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim)) | |
self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim)) | |
else: | |
self.bias_k = self.bias_v = None | |
self.add_zero_attn = add_zero_attn | |
self.reset_parameters() | |
self.enable_torch_version = False | |
if hasattr(F, "multi_head_attention_forward"): | |
self.enable_torch_version = True | |
else: | |
self.enable_torch_version = False | |
self.last_attn_probs = None | |
def reset_parameters(self): | |
if self.qkv_same_dim: | |
nn.init.xavier_uniform_(self.in_proj_weight) | |
else: | |
nn.init.xavier_uniform_(self.k_proj_weight) | |
nn.init.xavier_uniform_(self.v_proj_weight) | |
nn.init.xavier_uniform_(self.q_proj_weight) | |
nn.init.xavier_uniform_(self.out_proj.weight) | |
if self.in_proj_bias is not None: | |
nn.init.constant_(self.in_proj_bias, 0.) | |
nn.init.constant_(self.out_proj.bias, 0.) | |
if self.bias_k is not None: | |
nn.init.xavier_normal_(self.bias_k) | |
if self.bias_v is not None: | |
nn.init.xavier_normal_(self.bias_v) | |
def forward( | |
self, | |
query, key, value, | |
key_padding_mask=None, | |
incremental_state=None, | |
need_weights=True, | |
static_kv=False, | |
attn_mask=None, | |
before_softmax=False, | |
need_head_weights=False, | |
enc_dec_attn_constraint_mask=None, | |
reset_attn_weight=None | |
): | |
"""Input shape: Time x Batch x Channel | |
Args: | |
key_padding_mask (ByteTensor, optional): mask to exclude | |
keys that are pads, of shape `(batch, src_len)`, where | |
padding elements are indicated by 1s. | |
need_weights (bool, optional): return the attention weights, | |
averaged over heads (default: False). | |
attn_mask (ByteTensor, optional): typically used to | |
implement causal attention, where the mask prevents the | |
attention from looking forward in time (default: None). | |
before_softmax (bool, optional): return the raw attention | |
weights and values before the attention softmax. | |
need_head_weights (bool, optional): return the attention | |
weights for each head. Implies *need_weights*. Default: | |
return the average attention weights over all heads. | |
""" | |
if need_head_weights: | |
need_weights = True | |
tgt_len, bsz, embed_dim = query.size() | |
assert embed_dim == self.embed_dim | |
assert list(query.size()) == [tgt_len, bsz, embed_dim] | |
if self.enable_torch_version and incremental_state is None and not static_kv and reset_attn_weight is None: | |
if self.qkv_same_dim: | |
return F.multi_head_attention_forward(query, key, value, | |
self.embed_dim, self.num_heads, | |
self.in_proj_weight, | |
self.in_proj_bias, self.bias_k, self.bias_v, | |
self.add_zero_attn, self.dropout, | |
self.out_proj.weight, self.out_proj.bias, | |
self.training, key_padding_mask, need_weights, | |
attn_mask) | |
else: | |
return F.multi_head_attention_forward(query, key, value, | |
self.embed_dim, self.num_heads, | |
torch.empty([0]), | |
self.in_proj_bias, self.bias_k, self.bias_v, | |
self.add_zero_attn, self.dropout, | |
self.out_proj.weight, self.out_proj.bias, | |
self.training, key_padding_mask, need_weights, | |
attn_mask, use_separate_proj_weight=True, | |
q_proj_weight=self.q_proj_weight, | |
k_proj_weight=self.k_proj_weight, | |
v_proj_weight=self.v_proj_weight) | |
if incremental_state is not None: | |
saved_state = self._get_input_buffer(incremental_state) | |
if 'prev_key' in saved_state: | |
# previous time steps are cached - no need to recompute | |
# key and value if they are static | |
if static_kv: | |
assert self.encoder_decoder_attention and not self.self_attention | |
key = value = None | |
else: | |
saved_state = None | |
if self.self_attention: | |
# self-attention | |
q, k, v = self.in_proj_qkv(query) | |
elif self.encoder_decoder_attention: | |
# encoder-decoder attention | |
q = self.in_proj_q(query) | |
if key is None: | |
assert value is None | |
k = v = None | |
else: | |
k = self.in_proj_k(key) | |
v = self.in_proj_v(key) | |
else: | |
q = self.in_proj_q(query) | |
k = self.in_proj_k(key) | |
v = self.in_proj_v(value) | |
q *= self.scaling | |
if self.bias_k is not None: | |
assert self.bias_v is not None | |
k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)]) | |
v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)]) | |
if attn_mask is not None: | |
attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1) | |
if key_padding_mask is not None: | |
key_padding_mask = torch.cat( | |
[key_padding_mask, key_padding_mask.new_zeros(key_padding_mask.size(0), 1)], dim=1) | |
q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim).transpose(0, 1) | |
if k is not None: | |
k = k.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1) | |
if v is not None: | |
v = v.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1) | |
if saved_state is not None: | |
# saved states are stored with shape (bsz, num_heads, seq_len, head_dim) | |
if 'prev_key' in saved_state: | |
prev_key = saved_state['prev_key'].view(bsz * self.num_heads, -1, self.head_dim) | |
if static_kv: | |
k = prev_key | |
else: | |
k = torch.cat((prev_key, k), dim=1) | |
if 'prev_value' in saved_state: | |
prev_value = saved_state['prev_value'].view(bsz * self.num_heads, -1, self.head_dim) | |
if static_kv: | |
v = prev_value | |
else: | |
v = torch.cat((prev_value, v), dim=1) | |
if 'prev_key_padding_mask' in saved_state and saved_state['prev_key_padding_mask'] is not None: | |
prev_key_padding_mask = saved_state['prev_key_padding_mask'] | |
if static_kv: | |
key_padding_mask = prev_key_padding_mask | |
else: | |
key_padding_mask = torch.cat((prev_key_padding_mask, key_padding_mask), dim=1) | |
saved_state['prev_key'] = k.view(bsz, self.num_heads, -1, self.head_dim) | |
saved_state['prev_value'] = v.view(bsz, self.num_heads, -1, self.head_dim) | |
saved_state['prev_key_padding_mask'] = key_padding_mask | |
self._set_input_buffer(incremental_state, saved_state) | |
src_len = k.size(1) | |
# This is part of a workaround to get around fork/join parallelism | |
# not supporting Optional types. | |
if key_padding_mask is not None and key_padding_mask.shape == torch.Size([]): | |
key_padding_mask = None | |
if key_padding_mask is not None: | |
assert key_padding_mask.size(0) == bsz | |
assert key_padding_mask.size(1) == src_len | |
if self.add_zero_attn: | |
src_len += 1 | |
k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1) | |
v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1) | |
if attn_mask is not None: | |
attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1) | |
if key_padding_mask is not None: | |
key_padding_mask = torch.cat( | |
[key_padding_mask, torch.zeros(key_padding_mask.size(0), 1).type_as(key_padding_mask)], dim=1) | |
attn_weights = torch.bmm(q, k.transpose(1, 2)) | |
attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz) | |
assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len] | |
if attn_mask is not None: | |
if len(attn_mask.shape) == 2: | |
attn_mask = attn_mask.unsqueeze(0) | |
elif len(attn_mask.shape) == 3: | |
attn_mask = attn_mask[:, None].repeat([1, self.num_heads, 1, 1]).reshape( | |
bsz * self.num_heads, tgt_len, src_len) | |
attn_weights = attn_weights + attn_mask | |
if enc_dec_attn_constraint_mask is not None: # bs x head x L_kv | |
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
attn_weights = attn_weights.masked_fill( | |
enc_dec_attn_constraint_mask.unsqueeze(2).bool(), | |
-1e8, | |
) | |
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
if key_padding_mask is not None: | |
# don't attend to padding symbols | |
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
attn_weights = attn_weights.masked_fill( | |
key_padding_mask.unsqueeze(1).unsqueeze(2), | |
-1e8, | |
) | |
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
attn_logits = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
if before_softmax: | |
return attn_weights, v | |
attn_weights_float = softmax(attn_weights, dim=-1) | |
attn_weights = attn_weights_float.type_as(attn_weights) | |
attn_probs = F.dropout(attn_weights_float.type_as(attn_weights), p=self.dropout, training=self.training) | |
if reset_attn_weight is not None: | |
if reset_attn_weight: | |
self.last_attn_probs = attn_probs.detach() | |
else: | |
assert self.last_attn_probs is not None | |
attn_probs = self.last_attn_probs | |
attn = torch.bmm(attn_probs, v) | |
assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim] | |
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) | |
attn = self.out_proj(attn) | |
if need_weights: | |
attn_weights = attn_weights_float.view(bsz, self.num_heads, tgt_len, src_len).transpose(1, 0) | |
if not need_head_weights: | |
# average attention weights over heads | |
attn_weights = attn_weights.mean(dim=0) | |
else: | |
attn_weights = None | |
return attn, (attn_weights, attn_logits) | |
def in_proj_qkv(self, query): | |
return self._in_proj(query).chunk(3, dim=-1) | |
def in_proj_q(self, query): | |
if self.qkv_same_dim: | |
return self._in_proj(query, end=self.embed_dim) | |
else: | |
bias = self.in_proj_bias | |
if bias is not None: | |
bias = bias[:self.embed_dim] | |
return F.linear(query, self.q_proj_weight, bias) | |
def in_proj_k(self, key): | |
if self.qkv_same_dim: | |
return self._in_proj(key, start=self.embed_dim, end=2 * self.embed_dim) | |
else: | |
weight = self.k_proj_weight | |
bias = self.in_proj_bias | |
if bias is not None: | |
bias = bias[self.embed_dim:2 * self.embed_dim] | |
return F.linear(key, weight, bias) | |
def in_proj_v(self, value): | |
if self.qkv_same_dim: | |
return self._in_proj(value, start=2 * self.embed_dim) | |
else: | |
weight = self.v_proj_weight | |
bias = self.in_proj_bias | |
if bias is not None: | |
bias = bias[2 * self.embed_dim:] | |
return F.linear(value, weight, bias) | |
def _in_proj(self, input, start=0, end=None): | |
weight = self.in_proj_weight | |
bias = self.in_proj_bias | |
weight = weight[start:end, :] | |
if bias is not None: | |
bias = bias[start:end] | |
return F.linear(input, weight, bias) | |
def _get_input_buffer(self, incremental_state): | |
return get_incremental_state( | |
self, | |
incremental_state, | |
'attn_state', | |
) or {} | |
def _set_input_buffer(self, incremental_state, buffer): | |
set_incremental_state( | |
self, | |
incremental_state, | |
'attn_state', | |
buffer, | |
) | |
def apply_sparse_mask(self, attn_weights, tgt_len, src_len, bsz): | |
return attn_weights | |
def clear_buffer(self, incremental_state=None): | |
if incremental_state is not None: | |
saved_state = self._get_input_buffer(incremental_state) | |
if 'prev_key' in saved_state: | |
del saved_state['prev_key'] | |
if 'prev_value' in saved_state: | |
del saved_state['prev_value'] | |
self._set_input_buffer(incremental_state, saved_state) | |
class Swish(torch.autograd.Function): | |
def forward(ctx, i): | |
result = i * torch.sigmoid(i) | |
ctx.save_for_backward(i) | |
return result | |
def backward(ctx, grad_output): | |
i = ctx.saved_variables[0] | |
sigmoid_i = torch.sigmoid(i) | |
return grad_output * (sigmoid_i * (1 + i * (1 - sigmoid_i))) | |
class CustomSwish(nn.Module): | |
def forward(self, input_tensor): | |
return Swish.apply(input_tensor) | |
class TransformerFFNLayer(nn.Module): | |
def __init__(self, hidden_size, filter_size, padding="SAME", kernel_size=1, dropout=0., act='gelu'): | |
super().__init__() | |
self.kernel_size = kernel_size | |
self.dropout = dropout | |
self.act = act | |
if padding == 'SAME': | |
self.ffn_1 = nn.Conv1d(hidden_size, filter_size, kernel_size, padding=kernel_size // 2) | |
elif padding == 'LEFT': | |
self.ffn_1 = nn.Sequential( | |
nn.ConstantPad1d((kernel_size - 1, 0), 0.0), | |
nn.Conv1d(hidden_size, filter_size, kernel_size) | |
) | |
self.ffn_2 = Linear(filter_size, hidden_size) | |
if self.act == 'swish': | |
self.swish_fn = CustomSwish() | |
def forward(self, x, incremental_state=None): | |
# x: T x B x C | |
if incremental_state is not None: | |
saved_state = self._get_input_buffer(incremental_state) | |
if 'prev_input' in saved_state: | |
prev_input = saved_state['prev_input'] | |
x = torch.cat((prev_input, x), dim=0) | |
x = x[-self.kernel_size:] | |
saved_state['prev_input'] = x | |
self._set_input_buffer(incremental_state, saved_state) | |
x = self.ffn_1(x.permute(1, 2, 0)).permute(2, 0, 1) | |
x = x * self.kernel_size ** -0.5 | |
if incremental_state is not None: | |
x = x[-1:] | |
if self.act == 'gelu': | |
x = F.gelu(x) | |
if self.act == 'relu': | |
x = F.relu(x) | |
if self.act == 'swish': | |
x = self.swish_fn(x) | |
x = F.dropout(x, self.dropout, training=self.training) | |
x = self.ffn_2(x) | |
return x | |
def _get_input_buffer(self, incremental_state): | |
return get_incremental_state( | |
self, | |
incremental_state, | |
'f', | |
) or {} | |
def _set_input_buffer(self, incremental_state, buffer): | |
set_incremental_state( | |
self, | |
incremental_state, | |
'f', | |
buffer, | |
) | |
def clear_buffer(self, incremental_state): | |
if incremental_state is not None: | |
saved_state = self._get_input_buffer(incremental_state) | |
if 'prev_input' in saved_state: | |
del saved_state['prev_input'] | |
self._set_input_buffer(incremental_state, saved_state) | |
class BatchNorm1dTBC(nn.Module): | |
def __init__(self, c): | |
super(BatchNorm1dTBC, self).__init__() | |
self.bn = nn.BatchNorm1d(c) | |
def forward(self, x): | |
""" | |
:param x: [T, B, C] | |
:return: [T, B, C] | |
""" | |
x = x.permute(1, 2, 0) # [B, C, T] | |
x = self.bn(x) # [B, C, T] | |
x = x.permute(2, 0, 1) # [T, B, C] | |
return x | |
class EncSALayer(nn.Module): | |
def __init__(self, c, num_heads, dropout, attention_dropout=0.1, | |
relu_dropout=0.1, kernel_size=9, padding='SAME', norm='ln', act='gelu'): | |
super().__init__() | |
self.c = c | |
self.dropout = dropout | |
self.num_heads = num_heads | |
if num_heads > 0: | |
if norm == 'ln': | |
self.layer_norm1 = LayerNorm(c) | |
elif norm == 'bn': | |
self.layer_norm1 = BatchNorm1dTBC(c) | |
elif norm == 'gn': | |
self.layer_norm1 = GroupNorm1DTBC(8, c) | |
self.self_attn = MultiheadAttention( | |
self.c, num_heads, self_attention=True, dropout=attention_dropout, bias=False) | |
if norm == 'ln': | |
self.layer_norm2 = LayerNorm(c) | |
elif norm == 'bn': | |
self.layer_norm2 = BatchNorm1dTBC(c) | |
elif norm == 'gn': | |
self.layer_norm2 = GroupNorm1DTBC(8, c) | |
self.ffn = TransformerFFNLayer( | |
c, 4 * c, kernel_size=kernel_size, dropout=relu_dropout, padding=padding, act=act) | |
def forward(self, x, encoder_padding_mask=None, **kwargs): | |
layer_norm_training = kwargs.get('layer_norm_training', None) | |
if layer_norm_training is not None: | |
self.layer_norm1.training = layer_norm_training | |
self.layer_norm2.training = layer_norm_training | |
if self.num_heads > 0: | |
residual = x | |
x = self.layer_norm1(x) | |
x, _, = self.self_attn( | |
query=x, | |
key=x, | |
value=x, | |
key_padding_mask=encoder_padding_mask | |
) | |
x = F.dropout(x, self.dropout, training=self.training) | |
x = residual + x | |
x = x * (1 - encoder_padding_mask.float()).transpose(0, 1)[..., None] | |
residual = x | |
x = self.layer_norm2(x) | |
x = self.ffn(x) | |
x = F.dropout(x, self.dropout, training=self.training) | |
x = residual + x | |
x = x * (1 - encoder_padding_mask.float()).transpose(0, 1)[..., None] | |
return x | |
class DecSALayer(nn.Module): | |
def __init__(self, c, num_heads, dropout, attention_dropout=0.1, relu_dropout=0.1, | |
kernel_size=9, act='gelu', norm='ln'): | |
super().__init__() | |
self.c = c | |
self.dropout = dropout | |
if norm == 'ln': | |
self.layer_norm1 = LayerNorm(c) | |
elif norm == 'gn': | |
self.layer_norm1 = GroupNorm1DTBC(8, c) | |
self.self_attn = MultiheadAttention( | |
c, num_heads, self_attention=True, dropout=attention_dropout, bias=False | |
) | |
if norm == 'ln': | |
self.layer_norm2 = LayerNorm(c) | |
elif norm == 'gn': | |
self.layer_norm2 = GroupNorm1DTBC(8, c) | |
self.encoder_attn = MultiheadAttention( | |
c, num_heads, encoder_decoder_attention=True, dropout=attention_dropout, bias=False, | |
) | |
if norm == 'ln': | |
self.layer_norm3 = LayerNorm(c) | |
elif norm == 'gn': | |
self.layer_norm3 = GroupNorm1DTBC(8, c) | |
self.ffn = TransformerFFNLayer( | |
c, 4 * c, padding='LEFT', kernel_size=kernel_size, dropout=relu_dropout, act=act) | |
def forward( | |
self, | |
x, | |
encoder_out=None, | |
encoder_padding_mask=None, | |
incremental_state=None, | |
self_attn_mask=None, | |
self_attn_padding_mask=None, | |
attn_out=None, | |
reset_attn_weight=None, | |
**kwargs, | |
): | |
layer_norm_training = kwargs.get('layer_norm_training', None) | |
if layer_norm_training is not None: | |
self.layer_norm1.training = layer_norm_training | |
self.layer_norm2.training = layer_norm_training | |
self.layer_norm3.training = layer_norm_training | |
residual = x | |
x = self.layer_norm1(x) | |
x, _ = self.self_attn( | |
query=x, | |
key=x, | |
value=x, | |
key_padding_mask=self_attn_padding_mask, | |
incremental_state=incremental_state, | |
attn_mask=self_attn_mask | |
) | |
x = F.dropout(x, self.dropout, training=self.training) | |
x = residual + x | |
attn_logits = None | |
if encoder_out is not None or attn_out is not None: | |
residual = x | |
x = self.layer_norm2(x) | |
if encoder_out is not None: | |
x, attn = self.encoder_attn( | |
query=x, | |
key=encoder_out, | |
value=encoder_out, | |
key_padding_mask=encoder_padding_mask, | |
incremental_state=incremental_state, | |
static_kv=True, | |
enc_dec_attn_constraint_mask=get_incremental_state(self, incremental_state, | |
'enc_dec_attn_constraint_mask'), | |
reset_attn_weight=reset_attn_weight | |
) | |
attn_logits = attn[1] | |
elif attn_out is not None: | |
x = self.encoder_attn.in_proj_v(attn_out) | |
if encoder_out is not None or attn_out is not None: | |
x = F.dropout(x, self.dropout, training=self.training) | |
x = residual + x | |
residual = x | |
x = self.layer_norm3(x) | |
x = self.ffn(x, incremental_state=incremental_state) | |
x = F.dropout(x, self.dropout, training=self.training) | |
x = residual + x | |
return x, attn_logits | |
def clear_buffer(self, input, encoder_out=None, encoder_padding_mask=None, incremental_state=None): | |
self.encoder_attn.clear_buffer(incremental_state) | |
self.ffn.clear_buffer(incremental_state) | |
def set_buffer(self, name, tensor, incremental_state): | |
return set_incremental_state(self, incremental_state, name, tensor) | |
class ConvBlock(nn.Module): | |
def __init__(self, idim=80, n_chans=256, kernel_size=3, stride=1, norm='gn', dropout=0): | |
super().__init__() | |
self.conv = ConvNorm(idim, n_chans, kernel_size, stride=stride) | |
self.norm = norm | |
if self.norm == 'bn': | |
self.norm = nn.BatchNorm1d(n_chans) | |
elif self.norm == 'in': | |
self.norm = nn.InstanceNorm1d(n_chans, affine=True) | |
elif self.norm == 'gn': | |
self.norm = nn.GroupNorm(n_chans // 16, n_chans) | |
elif self.norm == 'ln': | |
self.norm = LayerNorm(n_chans // 16, n_chans) | |
elif self.norm == 'wn': | |
self.conv = torch.nn.utils.weight_norm(self.conv.conv) | |
self.dropout = nn.Dropout(dropout) | |
self.relu = nn.ReLU() | |
def forward(self, x): | |
""" | |
:param x: [B, C, T] | |
:return: [B, C, T] | |
""" | |
x = self.conv(x) | |
if not isinstance(self.norm, str): | |
if self.norm == 'none': | |
pass | |
elif self.norm == 'ln': | |
x = self.norm(x.transpose(1, 2)).transpose(1, 2) | |
else: | |
x = self.norm(x) | |
x = self.relu(x) | |
x = self.dropout(x) | |
return x | |
class ConvStacks(nn.Module): | |
def __init__(self, idim=80, n_layers=5, n_chans=256, odim=32, kernel_size=5, norm='gn', | |
dropout=0, strides=None, res=True): | |
super().__init__() | |
self.conv = torch.nn.ModuleList() | |
self.kernel_size = kernel_size | |
self.res = res | |
self.in_proj = Linear(idim, n_chans) | |
if strides is None: | |
strides = [1] * n_layers | |
else: | |
assert len(strides) == n_layers | |
for idx in range(n_layers): | |
self.conv.append(ConvBlock( | |
n_chans, n_chans, kernel_size, stride=strides[idx], norm=norm, dropout=dropout)) | |
self.out_proj = Linear(n_chans, odim) | |
def forward(self, x, return_hiddens=False): | |
""" | |
:param x: [B, T, H] | |
:return: [B, T, H] | |
""" | |
x = self.in_proj(x) | |
x = x.transpose(1, -1) # (B, idim, Tmax) | |
hiddens = [] | |
for f in self.conv: | |
x_ = f(x) | |
x = x + x_ if self.res else x_ # (B, C, Tmax) | |
hiddens.append(x) | |
x = x.transpose(1, -1) | |
x = self.out_proj(x) # (B, Tmax, H) | |
if return_hiddens: | |
hiddens = torch.stack(hiddens, 1) # [B, L, C, T] | |
return x, hiddens | |
return x | |
class ConvGlobalStacks(nn.Module): | |
def __init__(self, idim=80, n_layers=5, n_chans=256, odim=32, kernel_size=5, norm='gn', dropout=0, | |
strides=[2, 2, 2, 2, 2]): | |
super().__init__() | |
self.conv = torch.nn.ModuleList() | |
self.pooling = torch.nn.ModuleList() | |
self.kernel_size = kernel_size | |
self.in_proj = Linear(idim, n_chans) | |
for idx in range(n_layers): | |
self.conv.append(ConvBlock(n_chans, n_chans, kernel_size, stride=strides[idx], | |
norm=norm, dropout=dropout)) | |
self.pooling.append(nn.MaxPool1d(strides[idx])) | |
self.out_proj = Linear(n_chans, odim) | |
def forward(self, x): | |
""" | |
:param x: [B, T, H] | |
:return: [B, T, H] | |
""" | |
x = self.in_proj(x) | |
x = x.transpose(1, -1) # (B, idim, Tmax) | |
for f, p in zip(self.conv, self.pooling): | |
x = f(x) # (B, C, T) | |
x = x.transpose(1, -1) | |
x = self.out_proj(x.mean(1)) # (B, H) | |
return x | |
class ConvLSTMStacks(nn.Module): | |
def __init__(self, idim=80, n_layers=5, n_chans=256, odim=32, kernel_size=3, norm='gn', dropout=0): | |
super().__init__() | |
self.conv = torch.nn.ModuleList() | |
self.kernel_size = kernel_size | |
self.in_proj = Linear(idim, n_chans) | |
for idx in range(n_layers): | |
self.conv.append(ConvBlock(n_chans, n_chans, kernel_size, stride=1, norm=norm, dropout=dropout)) | |
self.lstm = nn.LSTM(n_chans, n_chans, 1, batch_first=True, bidirectional=True) | |
self.out_proj = Linear(n_chans * 2, odim) | |
def forward(self, x): | |
""" | |
:param x: [B, T, H] | |
:return: [B, T, H] | |
""" | |
x = self.in_proj(x) | |
x = x.transpose(1, -1) # (B, idim, Tmax) | |
for f in self.conv: | |
x = x + f(x) # (B, C, Tmax) | |
x = x.transpose(1, -1) | |
x, _ = self.lstm(x) # (B, Tmax, H*2) | |
x = self.out_proj(x) # (B, Tmax, H) | |
return x | |
class ResidualLayer(nn.Module): | |
def __init__(self, in_channels, out_channels, kernel_size, padding): | |
super(ResidualLayer, self).__init__() | |
self.conv1d_layer = nn.Sequential(nn.Conv1d(in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
stride=1, | |
padding=padding), | |
nn.InstanceNorm1d(num_features=out_channels, | |
affine=True)) | |
self.conv_layer_gates = nn.Sequential(nn.Conv1d(in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
stride=1, | |
padding=padding), | |
nn.InstanceNorm1d(num_features=out_channels, | |
affine=True)) | |
self.conv1d_out_layer = nn.Sequential(nn.Conv1d(in_channels=out_channels, | |
out_channels=in_channels, | |
kernel_size=kernel_size, | |
stride=1, | |
padding=padding), | |
nn.InstanceNorm1d(num_features=in_channels, | |
affine=True)) | |
def forward(self, input): | |
""" | |
:param input: [B, H, T] | |
:return: input: [B, H, T] | |
""" | |
h1_norm = self.conv1d_layer(input) | |
h1_gates_norm = self.conv_layer_gates(input) | |
# GLU | |
h1_glu = h1_norm * torch.sigmoid(h1_gates_norm) | |
h2_norm = self.conv1d_out_layer(h1_glu) | |
return input + h2_norm | |
class ConvGLUStacks(nn.Module): | |
def __init__(self, idim=80, n_layers=3, n_chans=256, odim=32, kernel_size=5, dropout=0): | |
super().__init__() | |
self.convs = [] | |
self.kernel_size = kernel_size | |
self.in_proj = Linear(idim, n_chans) | |
for idx in range(n_layers): | |
self.convs.append( | |
nn.Sequential(ResidualLayer( | |
n_chans, n_chans, kernel_size, kernel_size // 2), | |
nn.Dropout(dropout) | |
)) | |
self.convs = nn.Sequential(*self.convs) | |
self.out_proj = Linear(n_chans, odim) | |
def forward(self, x): | |
""" | |
:param x: [B, T, H] | |
:return: [B, T, H] | |
""" | |
x = self.in_proj(x) | |
x = x.transpose(1, -1) # (B, idim, Tmax) | |
x = self.convs(x) # (B, C, Tmax) | |
x = x.transpose(1, -1) | |
x = self.out_proj(x) # (B, Tmax, H) | |
return x | |