File size: 4,906 Bytes
3d8379d
 
 
 
 
 
 
 
 
 
 
 
e5a474c
3d8379d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65137b3
3d8379d
adb0128
 
3d8379d
 
 
 
 
 
 
 
 
65137b3
3d8379d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
691eb11
3d8379d
 
 
 
 
 
691eb11
 
3d8379d
 
691eb11
3d8379d
691eb11
3d8379d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adb0128
3d8379d
 
 
 
 
 
 
 
 
 
 
 
 
 
691eb11
df8e1c7
 
3d8379d
 
 
adb0128
3d8379d
 
adb0128
3d8379d
 
 
 
691eb11
3d8379d
 
 
e5a474c
 
 
 
 
 
 
 
 
 
 
 
6956f4b
 
 
 
 
 
 
 
 
 
3d8379d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import os
import time
import gradio as gr
import numpy as np
import torch
import torchvision.transforms as T
from typing import List
import glob
import cv2
import pickle
import zipfile
import faiss
from examples import examples


DINOV2_REPO = "facebookresearch/dinov2"
DINOV2_MODEL = "dinov2_vitl14"

DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Trasnforms
patch_height_nums = 40
patch_width_nums = 40
patch_size = 14
height = patch_height_nums * patch_size
width = patch_width_nums * patch_size

transform = T.Compose([
    T.Resize((width, height)),
    T.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
])

height, width = patch_size * patch_height_nums, patch_size * patch_width_nums

# DINOV2
model = torch.hub.load(DINOV2_REPO, DINOV2_MODEL).to(DEVICE)

# faiss
K= 5

def read_image(image_path: str) -> np.ndarray:
    image = cv2.imread(image_path, cv2.IMREAD_COLOR)
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    return image


def infer(image: np.ndarray) -> np.ndarray:
    image = np.transpose(image, (2, 0, 1)) // 255
    transformed_image = transform(torch.Tensor(image)).to(DEVICE)
    embedding = model(torch.unsqueeze(transformed_image, 0))
    return embedding.detach().cpu().numpy()


def unzip(zipfile_path: str) -> str:
    output_dir = zipfile_path.split("/")[-1].split(".")[0]
    with zipfile.ZipFile(zipfile_path, 'r') as myzip:
        # Loop through each file in the zip file
        for name in myzip.namelist():
            # Check if the file is an image file
            if name.endswith('.jpg') or name.endswith('.png'):
                # Extract the file from the zip archive to disk
                myzip.extract(name, output_dir)
    return output_dir


def calculate_embedding(
    zipfile,
) -> str:
    filedir = unzip(zipfile.name)
    database = []
    start = time.time()
    for img_path in glob.glob(os.path.join(filedir, "*")):
        if img_path.split(".")[-1] not in ["jpg", "png", "jpeg"]:
            continue
        image = read_image(img_path)
        embedding = infer(image)
        database.append((img_path, embedding))
    print(f"Embedding Calculation: {time.time() - start}")
    filepath = "database.pickle"
    with open(filepath, "wb") as f:
        pickle.dump(database, f)
    return filepath


def instance_recognition(
    embedding_file,
    zipfile,
    image_path: str,
) -> List[np.ndarray]:
    with open(embedding_file.name, "rb") as f:
        embeddings = pickle.load(f)
    unzip(zipfile.name)
    embedding_vectors = []
    image_paths = []
    for img_path, embedding in embeddings:
        embedding_vectors.append(embedding)
        image_paths.append(img_path)

    embedding_vectors = np.squeeze(np.array(embedding_vectors), axis=1)
    d = embedding_vectors.shape[-1]

    # train faiss
    index = faiss.IndexFlatIP(d)
    index.add(embedding_vectors)

    # infer image
    image = read_image(image_path)
    image_embedding = infer(image)

    # search
    distances, indices = index.search(image_embedding, K)
    res = []
    for i in indices[0]:
        res.append(read_image(image_paths[i]))
    return res[::-1] + distances[0].tolist()[::-1]


with gr.Blocks() as demo:
    gr.Markdown("# Instance Recogniton with DINOV2")

    with gr.Tab("Instance Recognition"):

        with gr.Row():
            infer_btn = gr.Button(value="Inference")
            image_embedding_file = gr.File(type="file", label="Image Embeddings")
            image_zip_file = gr.File(type="file", label="Image Zip File")
        with gr.Row():
            input_image = gr.Image(type="filepath", label="Input Image")

        with gr.Row():
            output_images = [
                gr.Image(label=f"Similar {i + 1}") for i in range(K)
            ]
            distances = [
                gr.Text(label=f"Similar {i + 1} Distances") for i in range(K)
            ]

        infer_btn.click(
            instance_recognition,
            inputs=[image_embedding_file, image_zip_file, input_image],
            outputs=output_images + distances,
        )

        gr.Examples(
            examples=examples,
            inputs=[
                image_embedding_file,
                image_zip_file,
                input_image,
            ],
            outputs=output_images + distances,
            fn=instance_recognition,
            run_on_click=True,
        )

    with gr.Tab("Image Embedding with database"):
        with gr.Row():
            embedding_btn = gr.Button(value="Image Embedding")
            image_zip_file = gr.File(type="file", label="Image Zip File")
            image_embedding_file = gr.File(type="binary", label="Image Embedding with DINOV2")
            embedding_btn.click(
                calculate_embedding, inputs=image_zip_file, outputs=image_embedding_file,
            )


if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0")