update the _compute function to use the seametrics library

#3
Files changed (1) hide show
  1. user-friendly-metrics.py +2 -216
user-friendly-metrics.py CHANGED
@@ -20,6 +20,8 @@ from motmetrics.metrics import (events_to_df_map,
20
  track_ratios)
21
  import numpy as np
22
 
 
 
23
  _CITATION = """\
24
  @InProceedings{huggingface:module,
25
  title = {A great new module},
@@ -97,219 +99,3 @@ class UserFriendlyMetrics(evaluate.Metric):
97
  return calculate_from_payload(payload, max_iou, filters, recognition_thresholds, debug)
98
  #return calculate(predictions, references, max_iou)
99
 
100
- def recognition(track_ratios, th = 0.5):
101
- """Number of objects tracked for at least 20 percent of lifespan."""
102
- return track_ratios[track_ratios >= th].count()
103
-
104
- def num_gt_ids(df):
105
- """Number of unique gt ids."""
106
- return df.full["OId"].dropna().unique().shape[0]
107
-
108
- def calculate(predictions,
109
- references,
110
- max_iou: float = 0.5,
111
- recognition_thresholds: list = [0.3, 0.5, 0.8]
112
- ):
113
-
114
- """Returns the scores"""
115
-
116
- try:
117
- np_predictions = np.array(predictions)
118
- except:
119
- raise ValueError("The predictions should be a list of np.arrays in the format [frame number, object id, bb_left, bb_top, bb_width, bb_height, confidence]")
120
-
121
- try:
122
- np_references = np.array(references)
123
- except:
124
- raise ValueError("The references should be a list of np.arrays in the format [frame number, object id, bb_left, bb_top, bb_width, bb_height]")
125
-
126
- if np_predictions.shape[1] != 7:
127
- raise ValueError("The predictions should be a list of np.arrays in the format [frame number, object id, bb_left, bb_top, bb_width, bb_height, confidence]")
128
- if np_references.shape[1] != 6:
129
- raise ValueError("The references should be a list of np.arrays in the format [frame number, object id, bb_left, bb_top, bb_width, bb_height]")
130
-
131
- if np_predictions[:, 0].min() <= 0:
132
- raise ValueError("The frame number in the predictions should be a positive integer")
133
- if np_references[:, 0].min() <= 0:
134
- raise ValueError("The frame number in the references should be a positive integer")
135
-
136
- num_frames = int(max(np_references[:, 0].max(), np_predictions[:, 0].max()))
137
-
138
- acc = mm.MOTAccumulator(auto_id=True)
139
- for i in range(1, num_frames+1):
140
- preds = np_predictions[np_predictions[:, 0] == i, 1:6]
141
- refs = np_references[np_references[:, 0] == i, 1:6]
142
- C = mm.distances.iou_matrix(refs[:,1:], preds[:,1:], max_iou = 1-max_iou) #motmetrics expects iou association threshold to be smaller for stricter association
143
- acc.update(refs[:,0].astype('int').tolist(), preds[:,0].astype('int').tolist(), C)
144
-
145
- mh = mm.metrics.create()
146
- summary = mh.compute(acc, metrics=['num_misses', 'num_false_positives', 'num_detections']).to_dict()
147
-
148
- df = events_to_df_map(acc.events)
149
- tr_ratios = track_ratios(df, obj_frequencies(df))
150
- unique_gt_ids = num_gt_ids(df)
151
-
152
- namemap = {"num_misses": "fn",
153
- "num_false_positives": "fp",
154
- "num_detections": "tp"}
155
-
156
- for key in list(summary.keys()):
157
- if key in namemap:
158
- summary[namemap[key]] = float(summary[key][0])
159
- summary.pop(key)
160
- else:
161
- summary[key] = float(summary[key][0])
162
-
163
- summary["num_gt_ids"] = unique_gt_ids
164
-
165
- for th in recognition_thresholds:
166
- recognized = recognition(tr_ratios, th)
167
- summary[f'recognized_{th}'] = int(recognized)
168
-
169
- return summary
170
-
171
- def build_metrics_template(models, filters):
172
- metrics_dict = {}
173
- for model in models:
174
- metrics_dict[model] = {}
175
- metrics_dict[model]["all"] = {}
176
- for filter, filter_ranges in filters.items():
177
- metrics_dict[model][filter] = {}
178
- for filter_range in filter_ranges:
179
- filter_range_name = filter_range[0]
180
- metrics_dict[model][filter][filter_range_name] = {}
181
- return metrics_dict
182
-
183
-
184
- def calculate_from_payload(payload: dict,
185
- max_iou: float = 0.5,
186
- filters = {},
187
- recognition_thresholds = [0.3, 0.5, 0.8],
188
- debug: bool = False):
189
-
190
- if not isinstance(payload, dict):
191
- try:
192
- payload = payload.to_dict()
193
- except Exception as e:
194
- raise ValueError(
195
- "The payload should be a dictionary or a compatible object"
196
- ) from e
197
- gt_field_name = payload['gt_field_name']
198
- models = payload['models']
199
- sequence_list = payload['sequence_list']
200
-
201
- if debug:
202
- print("gt_field_name: ", gt_field_name)
203
- print("models: ", models)
204
- print("sequence_list: ", sequence_list)
205
-
206
- metrics_per_sequence = {}
207
- metrics_global = build_metrics_template(models, filters)
208
-
209
- for sequence in sequence_list:
210
- metrics_per_sequence[sequence] = {}
211
- frames = payload['sequences'][sequence][gt_field_name]
212
-
213
- all_formated_references = {"all": []}
214
- for filter, filter_ranges in filters.items():
215
- all_formated_references[filter] = {}
216
- for filter_range in filter_ranges:
217
- filter_range_name = filter_range[0]
218
- all_formated_references[filter][filter_range_name] = []
219
-
220
- for frame_id, frame in enumerate(frames):
221
- for detection in frame:
222
- index = detection['index']
223
- x, y, w, h = detection['bounding_box']
224
- all_formated_references["all"].append([frame_id+1, index, x, y, w, h])
225
-
226
- for filter, filter_ranges in filters.items():
227
- filter_value = detection[filter]
228
- for filter_range in filter_ranges:
229
- filter_range_name, filter_range_limits = filter_range[0], filter_range[1]
230
- if filter_value >= filter_range_limits[0] and filter_value <= filter_range_limits[1]:
231
- all_formated_references[filter][filter_range_name].append([frame_id+1, index, x, y, w, h])
232
-
233
- metrics_per_sequence[sequence] = build_metrics_template(models, filters)
234
-
235
- for model in models:
236
- frames = payload['sequences'][sequence][model]
237
- formated_predictions = []
238
-
239
- for frame_id, frame in enumerate(frames):
240
- for detection in frame:
241
- index = detection['index']
242
- x, y, w, h = detection['bounding_box']
243
- confidence = 1
244
- formated_predictions.append([frame_id+1, index, x, y, w, h, confidence])
245
-
246
- if debug:
247
- print("sequence/model: ", sequence, model)
248
- print("formated_predictions: ", formated_predictions)
249
- print("formated_references: ", all_formated_references)
250
-
251
- if len(formated_predictions) == 0:
252
- metrics_per_sequence[sequence][model] = "Model had no predictions."
253
- elif len(all_formated_references["all"]) == 0:
254
- metrics_per_sequence[sequence][model] = "No ground truth."
255
-
256
- else:
257
-
258
- sequence_metrics = calculate(formated_predictions, all_formated_references["all"], max_iou=max_iou, recognition_thresholds = recognition_thresholds)
259
- sequence_metrics = realize_metrics(sequence_metrics, recognition_thresholds)
260
- metrics_per_sequence[sequence][model]["all"] = sequence_metrics
261
-
262
- metrics_global[model]["all"] = sum_dicts(metrics_global[model]["all"], sequence_metrics)
263
- metrics_global[model]["all"] = realize_metrics(metrics_global[model]["all"], recognition_thresholds)
264
-
265
- for filter, filter_ranges in filters.items():
266
-
267
- for filter_range in filter_ranges:
268
-
269
- filter_range_name = filter_range[0]
270
- sequence_metrics = calculate(formated_predictions, all_formated_references[filter][filter_range_name], max_iou=max_iou, recognition_thresholds = recognition_thresholds)
271
- sequence_metrics = realize_metrics(sequence_metrics, recognition_thresholds)
272
- metrics_per_sequence[sequence][model][filter][filter_range_name] = sequence_metrics
273
-
274
- metrics_global[model][filter][filter_range_name] = sum_dicts(metrics_global[model][filter][filter_range_name], sequence_metrics)
275
- metrics_global[model][filter][filter_range_name] = realize_metrics(metrics_global[model][filter][filter_range_name], recognition_thresholds)
276
-
277
- output = {"global": metrics_global, "per_sequence": metrics_per_sequence}
278
-
279
- return output
280
-
281
- def sum_dicts(dict1, dict2):
282
- """
283
- Recursively sums the numerical values in two nested dictionaries.
284
- """
285
- result = {}
286
- for key in dict1.keys() | dict2.keys(): # Union of keys from both dictionaries
287
- val1 = dict1.get(key, 0)
288
- val2 = dict2.get(key, 0)
289
- if isinstance(val1, dict) and isinstance(val2, dict):
290
- # If both values are dictionaries, recursively sum them
291
- result[key] = sum_dicts(val1, val2)
292
- elif isinstance(val1, (int, float)) and isinstance(val2, (int, float)):
293
- # If both are numbers, sum them
294
- result[key] = val1 + val2
295
- else:
296
- # If only one dictionary has the key, take the non-zero value
297
- result[key] = val1 if val1 != 0 else val2
298
- return result
299
-
300
- def realize_metrics(metrics_dict,
301
- recognition_thresholds):
302
- """
303
- calculates metrics based on raw metrics
304
- """
305
-
306
- metrics_dict["precision"] = metrics_dict["tp"]/(metrics_dict["tp"]+metrics_dict["fp"])
307
- metrics_dict["recall"] = metrics_dict["tp"]/(metrics_dict["tp"]+metrics_dict["fn"])
308
-
309
- metrics_dict["f1"] = 2*metrics_dict["precision"]*metrics_dict["recall"]/(metrics_dict["precision"]+metrics_dict["recall"]+1e-6)
310
-
311
- for th in recognition_thresholds:
312
- metrics_dict[f"recognition_{th}"] = metrics_dict[f"recognized_{th}"]/metrics_dict["num_gt_ids"]
313
-
314
- return metrics_dict
315
-
 
20
  track_ratios)
21
  import numpy as np
22
 
23
+ from seametrics.user_friendly.utils import calculate_from_payload
24
+
25
  _CITATION = """\
26
  @InProceedings{huggingface:module,
27
  title = {A great new module},
 
99
  return calculate_from_payload(payload, max_iou, filters, recognition_thresholds, debug)
100
  #return calculate(predictions, references, max_iou)
101