|
label_convertor = dict( |
|
type='AttnConvertor', dict_type='DICT90', with_unknown=True) |
|
|
|
model = dict( |
|
type='MASTER', |
|
backbone=dict( |
|
type='ResNet', |
|
in_channels=3, |
|
stem_channels=[64, 128], |
|
block_cfgs=dict( |
|
type='BasicBlock', |
|
plugins=dict( |
|
cfg=dict( |
|
type='GCAModule', |
|
ratio=0.0625, |
|
n_head=1, |
|
pooling_type='att', |
|
is_att_scale=False, |
|
fusion_type='channel_add'), |
|
position='after_conv2')), |
|
arch_layers=[1, 2, 5, 3], |
|
arch_channels=[256, 256, 512, 512], |
|
strides=[1, 1, 1, 1], |
|
plugins=[ |
|
dict( |
|
cfg=dict(type='Maxpool2d', kernel_size=2, stride=(2, 2)), |
|
stages=(True, True, False, False), |
|
position='before_stage'), |
|
dict( |
|
cfg=dict(type='Maxpool2d', kernel_size=(2, 1), stride=(2, 1)), |
|
stages=(False, False, True, False), |
|
position='before_stage'), |
|
dict( |
|
cfg=dict( |
|
type='ConvModule', |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
norm_cfg=dict(type='BN'), |
|
act_cfg=dict(type='ReLU')), |
|
stages=(True, True, True, True), |
|
position='after_stage') |
|
], |
|
init_cfg=[ |
|
dict(type='Kaiming', layer='Conv2d'), |
|
dict(type='Constant', val=1, layer='BatchNorm2d'), |
|
]), |
|
encoder=None, |
|
decoder=dict( |
|
type='MasterDecoder', |
|
d_model=512, |
|
n_head=8, |
|
attn_drop=0., |
|
ffn_drop=0., |
|
d_inner=2048, |
|
n_layers=3, |
|
feat_pe_drop=0.2, |
|
feat_size=6 * 40), |
|
loss=dict(type='TFLoss', reduction='mean'), |
|
label_convertor=label_convertor, |
|
max_seq_len=30) |
|
|