SorboBot / app.py
leo-bourrel's picture
feat: add relation between chat_history and documents
27a479a
raw
history blame
5.36 kB
import json
import os
import sqlalchemy
import streamlit as st
import streamlit.components.v1 as components
from langchain import OpenAI
from langchain.callbacks import get_openai_callback
from langchain.chains import ConversationalRetrievalChain
from langchain.chains.conversation.memory import ConversationBufferMemory
from langchain.embeddings import GPT4AllEmbeddings
from chat_history import insert_chat_history, insert_chat_history_articles
from css import load_css
from custom_pgvector import CustomPGVector
from message import Message
CONNECTION_STRING = "postgresql+psycopg2://localhost/sorbobot"
st.set_page_config(layout="wide")
st.title("Sorbobot - Le futur de la recherche scientifique interactive")
chat_column, doc_column = st.columns([2, 1])
def connect() -> sqlalchemy.engine.Connection:
engine = sqlalchemy.create_engine(CONNECTION_STRING)
conn = engine.connect()
return conn
conn = connect()
def initialize_session_state():
if "history" not in st.session_state:
st.session_state.history = []
if "token_count" not in st.session_state:
st.session_state.token_count = 0
if "conversation" not in st.session_state:
embeddings = GPT4AllEmbeddings()
db = CustomPGVector(
embedding_function=embeddings,
table_name="article",
column_name="abstract_embedding",
connection=conn,
)
retriever = db.as_retriever()
llm = OpenAI(
temperature=0,
openai_api_key=os.environ["OPENAI_API_KEY"],
model="text-davinci-003",
)
memory = ConversationBufferMemory(
output_key="answer", memory_key="chat_history", return_messages=True
)
st.session_state.conversation = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=retriever,
verbose=True,
memory=memory,
return_source_documents=True,
)
def on_click_callback():
with get_openai_callback() as cb:
human_prompt = st.session_state.human_prompt
llm_response = st.session_state.conversation(human_prompt)
st.session_state.history.append(Message("human", human_prompt))
st.session_state.history.append(
Message(
"ai", llm_response["answer"], documents=llm_response["source_documents"]
)
)
st.session_state.token_count += cb.total_tokens
history_id = insert_chat_history(conn, human_prompt, llm_response["answer"])
insert_chat_history_articles(conn, history_id, llm_response["source_documents"])
load_css()
initialize_session_state()
with chat_column:
chat_placeholder = st.container()
prompt_placeholder = st.form("chat-form")
information_placeholder = st.empty()
with chat_placeholder:
for chat in st.session_state.history:
div = f"""
<div class="chat-row
{'' if chat.origin == 'ai' else 'row-reverse'}">
<img class="chat-icon" src="./app/static/{
'ai_icon.png' if chat.origin == 'ai'
else 'user_icon.png'}"
width=32 height=32>
<div class="chat-bubble
{'ai-bubble' if chat.origin == 'ai' else 'human-bubble'}">
&#8203;{chat.message}
</div>
</div>
"""
st.markdown(div, unsafe_allow_html=True)
for _ in range(3):
st.markdown("")
with prompt_placeholder:
st.markdown("**Chat**")
cols = st.columns((6, 1))
cols[0].text_input(
"Chat",
value="Hello bot",
label_visibility="collapsed",
key="human_prompt",
)
cols[1].form_submit_button(
"Submit",
type="primary",
on_click=on_click_callback,
)
information_placeholder.caption(
f"""
Used {st.session_state.token_count} tokens \n
Debug Langchain conversation:
{st.session_state.conversation.memory.buffer}
"""
)
components.html(
"""
<script>
const streamlitDoc = window.parent.document;
const buttons = Array.from(
streamlitDoc.querySelectorAll('.stButton > button')
);
const submitButton = buttons.find(
el => el.innerText === 'Submit'
);
streamlitDoc.addEventListener('keydown', function(e) {
switch (e.key) {
case 'Enter':
submitButton.click();
break;
}
});
</script>
""",
height=0,
width=0,
)
with doc_column:
if len(st.session_state.history) > 0:
st.markdown("**Source documents**")
for doc in st.session_state.history[-1].documents:
doc_content = json.loads(doc.page_content)
expander = st.expander(doc_content["title"])
expander.markdown("**" + doc_content["doi"] + "**")
expander.markdown(doc_content["abstract"])
expander.markdown("**Authors** : " + doc_content["authors"])
expander.markdown("**Keywords** : " + doc_content["keywords"])
expander.markdown("**Distance** : " + str(doc_content["distance"]))