CogVideoX-2B-Space / pretrain_cogvideo.py
akhaliq's picture
akhaliq HF staff
add files
89dc200
raw
history blame
7.1 kB
# -*- encoding: utf-8 -*-
'''
@File : pretrain_cogvideo.py
@Time : 2021/10/06 00:58:32
@Author : Wenyi Hong
@Contact : [email protected]
'''
# here put the import lib
import os
import sys
import math
import random
import torch
import argparse
import numpy as np
from icetk import icetk as tokenizer
tokenizer.add_special_tokens(['<start_of_image>', '<start_of_english>', '<start_of_chinese>'])
from models.cogvideo_model import CogVideoModel
from SwissArmyTransformer import mpu, get_args
from SwissArmyTransformer.training.deepspeed_training import training_main
from SwissArmyTransformer.data_utils import BinaryDataset
def get_masks_and_position_ids_video(data, attention_mask_totxt=None, args=None):
# Extract batch size and sequence length.
batch_size, seq_length = data.size()
assert attention_mask_totxt is not None
layout = args.layout
assert seq_length == layout[-1]
n_pads = layout[0] - attention_mask_totxt.sum(dim=-1).long()
frame_len = layout[1]-layout[0]
position_ids = torch.zeros(batch_size, layout[2], dtype=torch.long,
device=data.device)
for i in range(batch_size):
torch.arange(layout[0] - n_pads[i], out=position_ids[i, n_pads[i]:layout[0]],
dtype=torch.long, device=data.device)
torch.arange(512, 512+layout[2]-layout[0],
out=position_ids[i, layout[0]:], dtype=torch.long, device=data.device)
return position_ids
def get_batch(data_iterator, args, timers):
# Items and their type.
keys = ['text', 'loss_mask', 'attention_mask_totxt']
datatype = torch.int64
# Broadcast data.
timers('data loader').start()
if data_iterator is not None:
data = next(data_iterator)
else:
data = None
timers('data loader').stop()
data_b = mpu.broadcast_data(keys, data, datatype)
# Unpack.
tokens_ = data_b['text'].long()
loss_mask = data_b['loss_mask'].float()
attention_mask_totxt = data_b['attention_mask_totxt'].float()
labels = tokens_[:, 1:].clone().contiguous()
loss_mask = loss_mask[:, 1:].contiguous()
tokens = tokens_[:, :-1].clone().contiguous()
for idx in range(args.layout[0], args.layout[2], 400):
tokens[:, idx] = tokenizer['<start_of_image>']
# Get the masks and postition ids.
position_ids = get_masks_and_position_ids_video(
tokens,
attention_mask_totxt=attention_mask_totxt,
args=args
)
attention_mask_totxt = attention_mask_totxt.unsqueeze(1).unsqueeze(1)
# Convert
if args.fp16:
attention_mask_totxt = attention_mask_totxt.half()
return tokens, labels, loss_mask, attention_mask_totxt, position_ids
def forward_step(data_iterator, model, args, timers):
"""Forward step."""
# Get the batch.
timers('batch generator').start()
tokens, labels, loss_mask, attention_mask_totxt, position_ids = get_batch(
data_iterator, args, timers)
timers('batch generator').stop()
# Forward model.
logits, *mems = model(tokens, position_ids, attention_mask_totxt)
# ======= hyper params =======#
perframe_len = 400
text_len=64
frame_num = 5
logits_img_tokens = logits[:, text_len:, :tokenizer.num_image_tokens].float().contiguous()
losses = mpu.vocab_parallel_cross_entropy(logits_img_tokens, labels[:, text_len:])
# scaling loss mask
loss_mask = loss_mask[:, text_len:].reshape(-1)
losses_1d = losses.reshape(-1) * loss_mask
loss = torch.sum(losses_1d) / loss_mask.sum()
# ===================== Log partial losses ======================== #
log_loss_dict = {}
bs = losses.shape[0]
if args.cogvideo_stage == 1:
for i in range(frame_num):
log_loss_dict[f'AR_f{i}_loss'] = losses[:, i*perframe_len:(i+1)*perframe_len].contiguous().reshape(-1).detach().sum() / max((perframe_len*bs), 1)
else:
for i in range(1, frame_num-1):
log_loss_dict[f'ITP_f{i}_loss'] = losses[:, i*perframe_len:(i+1)*perframe_len].contiguous().reshape(-1).detach().sum() / max((perframe_len*bs), 1)
# ===================== END OF BLOCK ======================= #
return loss, log_loss_dict
def create_dataset_function(path, args):
dataset_layout = [64, 464, 2064]
input_layout = [64, 464, 2064]
# frame_num = 6
# frame_interval = 2 # DEBUG!!!
def process_fn(row):
row = row.astype(np.int64)
text = row[:dataset_layout[0]]
frames = row[dataset_layout[0]:]
if text[0] == tokenizer['<pad>']:
text = text[1:] # due to our way of data processing
if args.cogvideo_stage == 1:
text, loss_mask, frames = make_text_video_generation(text, frames)
else:
text, loss_mask, frames = mask_video_frame_interpolation(text, frames)
n_pad = input_layout[0] - len(text)
parts = [
np.array([tokenizer['<pad>']] * n_pad, dtype=np.int64),
text,
np.array([tokenizer['<start_of_image>']], dtype=np.int64),
frames,
]
ret = np.concatenate(parts, axis=0)
attention_mask_totxt = np.array([0] * n_pad + [1] * (input_layout[0]-n_pad))
return {'text': ret,
'loss_mask': loss_mask,
'attention_mask_totxt': attention_mask_totxt,
}
return BinaryDataset(path, process_fn, length_per_sample=dataset_layout[-1])
def make_text_video_generation(text, frames):
input_layout = [64, 464, 2064]
text = text[text!= tokenizer['<pad>']][:input_layout[0]] # dataset format: 1.0秒<n>{text}<pad><pad> ...
loss_mask = np.array([0] * (input_layout[1]+1) + [1] * (input_layout[2] - input_layout[1])) # 按照input的,之后loss_mask会左移一位
return text, loss_mask, frames
def mask_video_frame_interpolation(text, frames):
input_layout = [64, 464, 2064]
frame_len = input_layout[1]-input_layout[0]
# text format: <pad> 1.0秒 <n> {text} <pad> <pad>
text = text[text!= tokenizer['<pad>']][:input_layout[0]]
loss_mask = np.array([0] * (input_layout[1]+1)
+ [1] * (input_layout[1]-input_layout[0])
+ [0] * (input_layout[1]-input_layout[0])
+ [1] * (input_layout[1]-input_layout[0])
+ [0] * (input_layout[1]-input_layout[0]) )# 按照input的,之后loss_mask会左移一位
return text, loss_mask, frames
if __name__ == '__main__':
py_parser = argparse.ArgumentParser(add_help=False)
py_parser.add_argument('--txt-loss-scale', type=float, default=1)
CogVideoModel.add_model_specific_args(py_parser)
known, args_list = py_parser.parse_known_args()
args = get_args(args_list)
args = argparse.Namespace(**vars(args), **vars(known))
args.layout = [int(x) for x in args.layout.split(',')]
training_main(args, model_cls=CogVideoModel, forward_step_function=forward_step, create_dataset_function=create_dataset_function)