Teapack1's picture
Update app.py
64843fe
raw
history blame
676 Bytes
import gradio as gr
from transformers import pipeline
import numpy as np
asr_model = "distil-whisper/distil-medium.en"
transcriber = pipeline("automatic-speech-recognition", model=asr_model)
def transcribe(stream, new_chunk):
sr, y = new_chunk
y = y.astype(np.float32)
y /= np.max(np.abs(y))
if stream is not None:
stream = np.concatenate([stream, y])
else:
stream = y
return stream, transcriber({"sampling_rate": sr, "raw": stream})["text"]
demo = gr.Interface(
transcribe,
["state", gr.Audio(sources=["microphone"], streaming=True)],
["state", "text"],
live=True,
)
if __name__ == "__main__":
demo.launch()