import gradio as gr | |
from transformers import pipeline | |
import numpy as np | |
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en") | |
def transcribe(audio): | |
sr, y = audio | |
y = y.astype(np.float32) | |
y /= np.max(np.abs(y)) | |
return transcriber({"sampling_rate": sr, "raw": y})["text"] | |
demo = gr.Interface( | |
fn=transcribe, | |
inputs=gr.Audio(sources="upload"), | |
outputs=gr.outputs.Textbox(), | |
) | |
demo.launch(debug=True) | |