|
import json |
|
import random |
|
random.seed(999) |
|
import torch |
|
from transformers import Qwen2ForSequenceClassification, AutoTokenizer |
|
import gradio as gr |
|
from datetime import datetime |
|
torch.set_grad_enabled(False) |
|
|
|
model = Qwen2ForSequenceClassification.from_pretrained("Thouph/prompt2tag-qwen2-0.5b-v0.1", num_labels = 9940).to("cuda") |
|
model.eval() |
|
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B") |
|
|
|
with open("tags_9940.json", "r") as file: |
|
allowed_tags = json.load(file) |
|
|
|
allowed_tags = sorted(allowed_tags) |
|
|
|
def create_tags(prompt, threshold): |
|
inputs = tokenizer( |
|
prompt, |
|
padding="do_not_pad", |
|
max_length=512, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
for k in inputs.keys(): |
|
inputs[k] = inputs[k].to("cuda") |
|
|
|
output = model(**inputs).logits |
|
output = torch.nn.functional.sigmoid(output) |
|
indices = torch.where(output > threshold) |
|
values = output[indices] |
|
indices = indices[1] |
|
values = values.squeeze() |
|
|
|
temp = [] |
|
tag_score = dict() |
|
for i in range(indices.size(0)): |
|
temp.append([allowed_tags[indices[i]], values[i].item()]) |
|
tag_score[allowed_tags[indices[i]]] = values[i].item() |
|
temp = [t[0] for t in temp] |
|
text_no_impl = " ".join(temp) |
|
current_datetime = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") |
|
print(f"{current_datetime}: finished.") |
|
return text_no_impl, tag_score |
|
|
|
demo = gr.Interface( |
|
create_tags, |
|
inputs=[ |
|
gr.TextArea(label="Prompt",), |
|
gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.40, label="Threshold") |
|
], |
|
outputs=[ |
|
gr.Textbox(label="Tag String"), |
|
gr.Label(label="Tag Predictions", num_top_classes=200), |
|
], |
|
allow_flagging="never", |
|
) |
|
|
|
demo.launch() |
|
|