PoliticsToYou / Home.py
TomData's picture
load db_all before inference
b5a209d
raw
history blame
5.83 kB
import gradio as gr
from src.chatbot import chatbot, keyword_search
from gradio_calendar import Calendar
from datetime import datetime
legislature_periods = [
"All",
"20. Legislaturperiode",
"19. Legislaturperiode",
"18. Legislaturperiode",
"17. Legislaturperiode",
"16. Legislaturperiode",
"15. Legislaturperiode",
"14. Legislaturperiode",
"13. Legislaturperiode",
"12. Legislaturperiode",
"11. Legislaturperiode",
"10. Legislaturperiode",
"9. Legislaturperiode",
"8. Legislaturperiode",
"7. Legislaturperiode",
"6. Legislaturperiode",
"5. Legislaturperiode",
"4. Legislaturperiode",
"3. Legislaturperiode",
"2. Legislaturperiode",
"1. Legislaturperiode"
]
with gr.Blocks() as App:
with gr.Tab("ChatBot"):
# Apply RAG using chatbut function from local file ChatBot.py
db_inputs = gr.Dropdown(choices=legislature_periods, value="All", multiselect=True, label="If empty all Legislaturperioden are selected", show_label=True)
print(db_inputs)
gr.ChatInterface(chatbot,
title="PoliticsToYou",
description= "This chatbot uses the infomation of speeches of the german parliament (since 2021) \
to get insight on the view points of the german parties and the debate of the parliament.",
#examples=["Wie steht die CDU zur Cannabislegalisierung?","Was waren die wichtigsten Themen in der aktuellen Legislaturperiode?"], #change to meaningful examples
cache_examples=False, #true increases the loading time
additional_inputs = db_inputs,
)
with gr.Tab("KeyWordSearch"):
with gr.Blocks() as Block:
# Keyword Input
keyword_box = gr.Textbox(label='keyword')
#Additional Input (hidden)
with gr.Accordion('Detailed filters', open=False):
# Row orientation
with gr.Row() as additional_input:
n_slider = gr.Slider(label="Number of Results", minimum=1, maximum=100, step=1, value=10)
party_dopdown = gr.Dropdown(value='All', choices=['All','CDU/CSU','SPD','FDP','Grüne','not found','DIE LINKE.','PDS','KPD'], label='Party') # change choices to all possible options
# ToDo: Add date or legislature filter as input
#start_date = Calendar(value="1949-01-01", type="datetime", label="Select start date", info="Click the calendar icon to bring up the calendar.", interactive=True)
#end_date = Calendar(value=datetime.today().strftime('%Y-%m-%d'), type="datetime", label="Select end date", info="Click the calendar icon to bring up the calendar.", interactive=True)
search_btn = gr.Button('Search')
with gr.Column(visible=False) as output_col:
results_df = gr.Dataframe(label='Results', interactive=False)
# Download results from keyword search
with gr.Accordion('Would you like to download your results?', open=False) as download_row:
with gr.Row():
ftype_dropdown = gr.Dropdown(choices=["csv","excel","json"], label="Format")
export_btn = gr.Button('Export')
file = gr.File(file_types=[".xlsx", ".csv", ".json"], visible=False)
# Keyword Search on click
def search(keyword, n, party): # ToDo: Include party and timedate
return {
output_col: gr.Column(visible=True),
results_df: keyword_search(query=keyword, n=n, party_filter=party),
}
search_btn.click(
fn=search,
inputs=[keyword_box, n_slider, party_dopdown],
outputs=[output_col, results_df],
)
# Export data to a downloadable format
def export(df, keyword, ftype=None):
if ftype == "csv":
file = f'{keyword}.csv'
df.to_csv(file, index = False)
return gr.File(value=file,visible=True)
elif ftype == "json":
file = f'{keyword}.json'
df.to_json(file, index = True)
return gr.File(value=file,visible=True)
else:
file = f'{keyword}.xlsx'
df.to_excel(file, index = True)
return gr.File(value=file,visible=True)
export_btn.click(
fn=export,
inputs=[results_df, keyword_box, ftype_dropdown],
outputs=[file],
)
with gr.Tab("About"):
gr.Markdown(text="""**Motivation:**
The idea of this project is a combination of my curiosity in LLM application and my affection for speech data, that I developed during my bachelor thesis on measuring populism in text data.
I would like to allow people to discover interesting discussions, opinions and positions that were communicated in the german parliament thoughout the years.
**Development status:**
Chatbot: Users can interact with the chatbot asking questions about anything that can be answered by speeches. Furthermore they can select any legislature as a basis for the chatbot's reply.
Keyword
""")
if __name__ == "__main__":
App.launch(share=False) #t rue not supported on hf spaces