File size: 962 Bytes
a2a46d0
aa0a69d
3482efe
b94d057
3482efe
 
 
b94d057
3482efe
aa0a69d
3482efe
aa0a69d
dc1d260
 
 
 
aa0a69d
dc1d260
 
 
 
 
 
3482efe
 
a2a46d0
 
dc1d260
 
3482efe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

import whisper
import gradio as gr

# Force the model to run on CPU
device = "cpu"
print("Running on CPU")

# Load the Whisper model on CPU
model_name = "tiny"  # Change to "base", "small", etc., as needed
whisper_model = whisper.load_model(model_name, device=device)

# Define the transcription function
def transcribe(audio):
    # Perform transcription using the Whisper model
    result = whisper_model.transcribe(audio)
    return result["text"]

# Create the Gradio interface
demo = gr.Interface(
    fn=transcribe,  # The function to be called for transcription
    inputs=gr.Audio(source="microphone", type="filepath", label="Speak into the microphone"),  # Input audio
    outputs=gr.Textbox(label="Transcription"),  # Output transcription
    title="Whisper Speech-to-Text",  # Title of the interface
    description="Record audio using your microphone and get a transcription using the Whisper model."
)

# Launch the Gradio interface
demo.launch()