File size: 5,330 Bytes
d0fef57
 
 
d561a66
d0fef57
e6ac7d7
 
 
d0fef57
bdea2c9
76cb1c1
0710318
 
d0fef57
 
 
 
 
e6ac7d7
 
d0fef57
e6ac7d7
 
d0fef57
e6ac7d7
ef5f95b
d0fef57
e6ac7d7
d0fef57
0710318
082c35d
76cb1c1
d0fef57
 
e6ac7d7
0710318
e6ac7d7
0710318
d0fef57
 
76cb1c1
e6ac7d7
dc21641
d0fef57
76cb1c1
 
 
 
 
e6ac7d7
76cb1c1
 
 
e6ac7d7
76cb1c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d561a66
 
e03007b
76cb1c1
77cbe96
82acb0f
 
e6ac7d7
76cb1c1
95c11a1
e6ac7d7
76cb1c1
 
 
82acb0f
e6ac7d7
76cb1c1
 
e6ac7d7
d0fef57
76cb1c1
 
 
 
 
 
 
 
d0fef57
 
 
76cb1c1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import os

import cv2
import gradio as gr
import torch
from basicsr.archs.srvgg_arch import SRVGGNetCompact
from gfpgan.utils import GFPGANer
from realesrgan.utils import RealESRGANer

os.system("pip freeze")
os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .")
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth -P .")
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P .")

torch.hub.download_url_to_file(
    'https://upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Abraham_Lincoln_O-77_matte_collodion_print.jpg/1024px-Abraham_Lincoln_O-77_matte_collodion_print.jpg',
    'lincoln.jpg')
torch.hub.download_url_to_file(
    'https://user-images.githubusercontent.com/17445847/187400315-87a90ac9-d231-45d6-b377-38702bd1838f.jpg',
    'AI-generate.jpg')
torch.hub.download_url_to_file(
    'https://user-images.githubusercontent.com/17445847/187400981-8a58f7a4-ef61-42d9-af80-bc6234cef860.jpg',
    'Blake_Lively.jpg')
torch.hub.download_url_to_file(
    'https://user-images.githubusercontent.com/17445847/187401133-8a3bf269-5b4d-4432-b2f0-6d26ee1d3307.png',
    '10045.png')

# background enhancer with RealESRGAN
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
model_path = 'realesr-general-x4v3.pth'
half = True if torch.cuda.is_available() else False
upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)

# Use GFPGAN for face enhancement
face_enhancer_v3 = GFPGANer(
    model_path='GFPGANv1.3.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
face_enhancer_v2 = GFPGANer(
    model_path='GFPGANv1.2.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
os.makedirs('output', exist_ok=True)


def inference(img, version, scale):
    print(img, version, scale)
    try:
        img = cv2.imread(img, cv2.IMREAD_UNCHANGED)
        if len(img.shape) == 3 and img.shape[2] == 4:
            img_mode = 'RGBA'
        else:
            img_mode = None

        h, w = img.shape[0:2]
        if h < 300:
            img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)

        if version == 'v1.2':
            face_enhancer = face_enhancer_v2
        else:
            face_enhancer = face_enhancer_v3
        try:
            _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
        except RuntimeError as error:
            print('Error', error)
        else:
            extension = 'png'

        try:
            if scale != 2:
                interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
                h, w = img.shape[0:2]
                output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation)
        except Exception as error:
            print('wrong scale input.', error)
        if img_mode == 'RGBA':  # RGBA images should be saved in png format
            extension = 'png'
        else:
            extension = 'jpg'
        save_path = f'output/out.{extension}'
        cv2.imwrite(save_path, output)

        output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
        return output, save_path
    except Exception as error:
        print('global exception', error)
        return None, None


title = "GFPGAN: Practical Face Restoration Algorithm"
description = r"""Gradio demo for <a href='https://github.com/TencentARC/GFPGAN' target='_blank'><b>GFPGAN: Towards Real-World Blind Face Restoration with Generative Facial Prior</b></a>.<br>
It can be used to restore your **old photos** or improve **AI-generated faces**.<br>
To use it, simply upload your image.<br>
If GFPGAN is helpful, please help to ⭐ the <a href='https://github.com/TencentARC/GFPGAN' target='_blank'>Github Repo</a> and recommend it to your friends 😊
"""
article = r"""

[![download](https://img.shields.io/github/downloads/TencentARC/GFPGAN/total.svg)](https://github.com/TencentARC/GFPGAN/releases)
[![GitHub Stars](https://img.shields.io/github/stars/TencentARC/GFPGAN?style=social)](https://github.com/TencentARC/GFPGAN)
[![arXiv](https://img.shields.io/badge/arXiv-Paper-<COLOR>.svg)](https://arxiv.org/abs/2101.04061)

If you have any question, please email πŸ“§ `[email protected]` or `[email protected]`.

<center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_GFPGAN' alt='visitor badge'></center>
<center><img src='https://visitor-badge.glitch.me/badge?page_id=Gradio_Xintao_GFPGAN' alt='visitor badge'></center>
"""
gr.Interface(
    inference, [
        gr.inputs.Image(type="filepath", label="Input"),
        gr.inputs.Radio(['v1.2', 'v1.3'], type="value", default='v1.3', label='GFPGAN version'),
        gr.inputs.Number(label="Rescaling factor", default=2)
    ], [
        gr.outputs.Image(type="numpy", label="Output (The whole image)"),
        gr.outputs.File(label="Download the output image")
    ],
    title=title,
    description=description,
    article=article,
    examples=[['AI-generate.jpg', 'v1.3', 2], ['lincoln.jpg', 'v1.3', 2], ['Blake_Lively.jpg', 'v1.3', 2],
              ['10045.png', 'v1.3', 2]]).launch()