Spaces:
Runtime error
Runtime error
Zengyf-CVer
commited on
Commit
·
e0f8c82
1
Parent(s):
c973154
v04 add csv excel
Browse files
app.py
CHANGED
@@ -243,6 +243,19 @@ def yolo_det_img(img, device, model_name, infer_size, conf, iou, max_num, model_
|
|
243 |
|
244 |
# Data Frame
|
245 |
dataframe = results.pandas().xyxy[0].round(2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
246 |
|
247 |
# ----------------Load fonts----------------
|
248 |
yaml_index = cls_name.index(".yaml")
|
@@ -479,7 +492,7 @@ def main(args):
|
|
479 |
inputs_iou01 = gr.Slider(0, 1, step=slider_step, value=nms_iou, label="IoU threshold")
|
480 |
inputs_maxnum01 = gr.Number(value=max_detnum, label="Maximum number of detections")
|
481 |
inputs_clsName01 = gr.CheckboxGroup(choices=model_cls_name, value=model_cls_name, type="index", label="category")
|
482 |
-
inputs_opt01 = gr.CheckboxGroup(choices=["label", "pdf", "json", "
|
483 |
value=["label", "pdf"],
|
484 |
type="value",
|
485 |
label="operate")
|
@@ -493,7 +506,7 @@ def main(args):
|
|
493 |
inputs_iou02 = gr.Slider(0, 1, step=slider_step, value=nms_iou, label="IoU threshold")
|
494 |
inputs_maxnum02 = gr.Number(value=max_detnum, label="Maximum number of detections")
|
495 |
inputs_clsName02 = gr.CheckboxGroup(choices=model_cls_name, value=model_cls_name, type="index", label="category")
|
496 |
-
inputs_opt02 = gr.CheckboxGroup(choices=["
|
497 |
|
498 |
# Input parameters
|
499 |
inputs_img_list = [
|
@@ -522,21 +535,23 @@ def main(args):
|
|
522 |
|
523 |
# -------------------output component-------------------
|
524 |
outputs_img = gr.Image(type="pil", label="Detection image")
|
525 |
-
|
526 |
-
outputs_pdf = gr.File(label="Download test report")
|
527 |
outputs_df = gr.Dataframe(max_rows=5,
|
528 |
overflow_row_behaviour="paginate",
|
529 |
type="pandas",
|
530 |
label="List of detection information")
|
531 |
outputs_objSize = gr.Label(label="Object size ratio statistics")
|
532 |
outputs_clsSize = gr.Label(label="Category detection proportion statistics")
|
533 |
-
|
|
|
|
|
|
|
534 |
|
535 |
# -------------------output component-------------------
|
536 |
outputs_video = gr.Video(format='mp4', label="Detection video")
|
537 |
|
538 |
# output parameters
|
539 |
-
outputs_img_list = [outputs_img, outputs_crops, outputs_objSize, outputs_clsSize, outputs_df, outputs_json, outputs_pdf]
|
540 |
outputs_video_list = [outputs_video]
|
541 |
|
542 |
# title
|
|
|
243 |
|
244 |
# Data Frame
|
245 |
dataframe = results.pandas().xyxy[0].round(2)
|
246 |
+
|
247 |
+
det_csv = "./Det_Report.csv"
|
248 |
+
det_excel = "./Det_Report.xlsx"
|
249 |
+
|
250 |
+
if "csv" in opt:
|
251 |
+
dataframe.to_csv(det_csv, index=False)
|
252 |
+
else:
|
253 |
+
det_csv = None
|
254 |
+
|
255 |
+
if "excel" in opt:
|
256 |
+
dataframe.to_excel(det_excel, sheet_name='sheet1', index=False)
|
257 |
+
else:
|
258 |
+
det_excel = None
|
259 |
|
260 |
# ----------------Load fonts----------------
|
261 |
yaml_index = cls_name.index(".yaml")
|
|
|
492 |
inputs_iou01 = gr.Slider(0, 1, step=slider_step, value=nms_iou, label="IoU threshold")
|
493 |
inputs_maxnum01 = gr.Number(value=max_detnum, label="Maximum number of detections")
|
494 |
inputs_clsName01 = gr.CheckboxGroup(choices=model_cls_name, value=model_cls_name, type="index", label="category")
|
495 |
+
inputs_opt01 = gr.CheckboxGroup(choices=["refresh_yolov5", "label", "pdf", "json", "csv", "excel"],
|
496 |
value=["label", "pdf"],
|
497 |
type="value",
|
498 |
label="operate")
|
|
|
506 |
inputs_iou02 = gr.Slider(0, 1, step=slider_step, value=nms_iou, label="IoU threshold")
|
507 |
inputs_maxnum02 = gr.Number(value=max_detnum, label="Maximum number of detections")
|
508 |
inputs_clsName02 = gr.CheckboxGroup(choices=model_cls_name, value=model_cls_name, type="index", label="category")
|
509 |
+
inputs_opt02 = gr.CheckboxGroup(choices=["refresh_yolov5", "label"], value=["label"], type="value", label="operate")
|
510 |
|
511 |
# Input parameters
|
512 |
inputs_img_list = [
|
|
|
535 |
|
536 |
# -------------------output component-------------------
|
537 |
outputs_img = gr.Image(type="pil", label="Detection image")
|
538 |
+
outputs_crops = gr.Gallery(label="Object crop")
|
|
|
539 |
outputs_df = gr.Dataframe(max_rows=5,
|
540 |
overflow_row_behaviour="paginate",
|
541 |
type="pandas",
|
542 |
label="List of detection information")
|
543 |
outputs_objSize = gr.Label(label="Object size ratio statistics")
|
544 |
outputs_clsSize = gr.Label(label="Category detection proportion statistics")
|
545 |
+
outputs_json = gr.JSON(label="Detection information")
|
546 |
+
outputs_pdf = gr.File(label="pdf detection report")
|
547 |
+
outputs_csv = gr.File(label="csv detection report")
|
548 |
+
outputs_excel = gr.File(label="xlsx detection report")
|
549 |
|
550 |
# -------------------output component-------------------
|
551 |
outputs_video = gr.Video(format='mp4', label="Detection video")
|
552 |
|
553 |
# output parameters
|
554 |
+
outputs_img_list = [outputs_img, outputs_crops, outputs_objSize, outputs_clsSize, outputs_df, outputs_json, outputs_pdf, outputs_csv, outputs_excel]
|
555 |
outputs_video_list = [outputs_video]
|
556 |
|
557 |
# title
|