File size: 7,804 Bytes
119105c
684fb8f
119105c
98feb90
684fb8f
 
 
1b0d680
684fb8f
 
 
 
 
 
119105c
 
 
 
 
 
 
3f68383
872c46f
119105c
 
8913269
119105c
3f68383
6015068
 
 
 
 
 
 
 
 
 
3f68383
 
1601fa4
98feb90
 
cb90e16
 
119105c
 
54b8f2e
119105c
962e77d
98feb90
cb90e16
962e77d
98feb90
119105c
2b90a75
119105c
98feb90
 
119105c
 
 
 
 
 
 
 
 
 
 
 
3441cff
 
119105c
 
 
 
 
 
 
 
ac3a4de
119105c
 
 
8913269
407c7c3
1b0d680
8913269
119105c
684fb8f
119105c
 
 
8913269
43f386d
 
 
 
8913269
119105c
962e77d
 
 
 
 
8913269
119105c
 
 
8913269
74df120
 
 
 
 
119105c
 
 
 
 
98feb90
9f3d881
b504a73
 
 
 
 
7185c8b
b504a73
 
 
 
9f3d881
8913269
 
 
684fb8f
1b0d680
7185c8b
8913269
b504a73
 
119105c
 
 
6015068
 
 
 
 
 
 
3f68383
119105c
 
 
 
 
 
 
 
 
3441cff
ac3a4de
8913269
6015068
 
 
 
 
 
 
3f68383
872c46f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
#!/usr/bin/env python
"""Demo app for https://github.com/ziqihuangg/ReVersion.
The code in this repo is partly adapted from the following repository:
https://github.com/ziqihuangg/ReVersion

S-Lab License 1.0

Copyright 2023 S-Lab
Redistribution and use for non-commercial purpose in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
4. In the event that redistribution and/or use for commercial purpose in source or binary forms, with or without modification is required, please contact the contributor(s) of the work.
"""

from __future__ import annotations
import sys
import os
import pathlib

import argparse
import gradio as gr
import torch

from inference import inference_fn


# def parse_args() -> argparse.Namespace:
#     parser = argparse.ArgumentParser()
#     parser.add_argument('--device', type=str, default='cpu')
#     parser.add_argument('--theme', type=str)
#     parser.add_argument('--share', action='store_true')
#     parser.add_argument('--port', type=int)
#     parser.add_argument('--disable-queue',
#                         dest='enable_queue',
#                         action='store_false')
#     return parser.parse_args()


TITLE = '# ReVersion'
DESCRIPTION = '''
This is a demo for **ReVersion: Diffusion-Based Relation Inversion from Images**
[[Paper](https://arxiv.org/abs/2303.13495)] | [[Project Page](https://ziqihuangg.github.io/projects/reversion.html)] | [[GitHub Code](https://github.com/ziqihuangg/ReVersion)] | [[Video](https://www.youtube.com/watch?v=pkal3yjyyKQ)]
It is recommended to upgrade to GPU in Settings after duplicating this space to use it. <a href="https://huggingface.co/spaces/Ziqi/ReVersion?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
'''
DETAILDESCRIPTION='''
ReVersion
'''
DETAILDESCRIPTION='''
We propose a new task, **Relation Inversion**: Given a few exemplar images, where a relation co-exists in every image, we aim to find a relation prompt **\<R>** to capture this interaction, and apply the relation to new entities to synthesize new scenes.
You can choose an inverted relation in the drop down menu, and use **\<R>** in your prompt for relation-specific text-to-image generation.
'''


ORIGINAL_SPACE_ID = 'Ziqi/ReVersion'
SPACE_ID = os.getenv('SPACE_ID', ORIGINAL_SPACE_ID)


if os.getenv('SYSTEM') == 'spaces' and SPACE_ID != ORIGINAL_SPACE_ID:
    SETTINGS = f'<a href="https://huggingface.co/spaces/{SPACE_ID}/settings">Settings</a>'

else:
    SETTINGS = 'Settings'
CUDA_NOT_AVAILABLE_WARNING = f'''# Attention - Running on CPU.
<center>
You can assign a GPU in the {SETTINGS} tab if you are running this on HF Spaces.
"T4 small" is sufficient to run this demo.
</center>
'''

# os.system("git clone https://github.com/ziqihuangg/ReVersion")
# sys.path.append("ReVersion")

def show_warning(warning_text: str) -> gr.Blocks:
    with gr.Blocks() as demo:
        with gr.Box():
            gr.Markdown(warning_text)
    return demo


def create_inference_demo(func: inference_fn) -> gr.Blocks:
    with gr.Blocks() as demo:
        with gr.Row():
            with gr.Column():
                model_id = gr.Dropdown(
                    choices=['painted_on', 'carved_by', 'inside'],
                    value='painted_on',
                    label='Relation',
                    visible=True)
                # reload_button = gr.Button('Reload Weight List')
                prompt = gr.Textbox(
                    label='Prompt',
                    max_lines=1,
                    placeholder='Example: "cat <R> stone"')
                # placeholder_string = gr.Textbox(
                #     label='Placeholder String',
                #     max_lines=1,
                #     placeholder='Example: "<R>"')

                with gr.Accordion('Other Parameters', open=False):
                    num_samples = gr.Slider(label='Number of Images to Generate',
                                               minimum=4,
                                               maximum=8,
                                               step=2,
                                               value=6)
                    guidance_scale = gr.Slider(label='Classifier-Free Guidance Scale',
                                               minimum=0,
                                               maximum=50,
                                               step=0.1,
                                               value=7.5)
                    ddim_steps = gr.Slider(label='Number of DDIM Sampling Steps',
                                               minimum=10,
                                               maximum=100,
                                               step=1,
                                               value=50)
                run_button = gr.Button('Generate')

            with gr.Column():
                result = gr.Image(label='Result')


        prompt.submit(fn=func,
                      inputs=[
                          model_id,
                          prompt,
                          num_samples,
                          guidance_scale,
                          ddim_steps
                      ],
                      outputs=result,
                      queue=False)

        run_button.click(fn=func,
                        inputs=[
                            model_id,
                            prompt,
                            num_samples,
                            guidance_scale,
                            ddim_steps
                        ],
                         outputs=result,
                         queue=False)
    return demo


# args = parse_args()
# args.device = 'cuda' if torch.cuda.is_available() else 'cpu'
# print('*** Now using %s.'%(args.device))
if torch.cuda.is_available():
    print('*** Now using %s.'%('cuda'))
else:
    print('*** Now using %s.'%('cpu'))

with gr.Blocks(css='style.css') as demo:
    if not torch.cuda.is_available():
        show_warning(CUDA_NOT_AVAILABLE_WARNING)

    gr.Markdown(TITLE)
    gr.Markdown(DESCRIPTION)
    gr.Markdown(DETAILDESCRIPTION)

    with gr.Tabs():
        with gr.TabItem('Relation-Specific Text-to-Image Generation'):
            create_inference_demo(inference_fn)

demo.queue(default_enabled=False).launch(share=False)

# demo.launch(
#     enable_queue=args.enable_queue,
#     server_port=args.port,
#     share=args.share
# )
# demo.queue(default_enabled=False).launch(server_port=args.port, share=args.share)