File size: 10,690 Bytes
fda57dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
"""
Source: https://github.com/ZurichNLP/recognizing-semantic-differences
MIT License
Copyright (c) 2023 University of Zurich
"""
import itertools
from copy import deepcopy
from typing import Union, List
import torch
from transformers import Pipeline, FeatureExtractionPipeline
from recognizers.feature_based import FeatureExtractionRecognizer, Ngram
from recognizers.utils import DifferenceSample, pairwise_cos_sim, cos_sim
class DiffDel(FeatureExtractionRecognizer):
def __init__(self,
model_name_or_path: str = None,
pipeline: Union[FeatureExtractionPipeline, Pipeline] = None,
layer: int = -1,
batch_size: int = 16,
min_n: int = 1,
max_n: int = 1, # Inclusive
):
super().__init__(model_name_or_path, pipeline, layer, batch_size)
assert min_n <= max_n
self.min_n = min_n
self.max_n = max_n
def __str__(self):
return f"DiffDel(model={self.pipeline.model.name_or_path}, layer={self.layer}, " \
f"min_n={self.min_n}, max_n={self.max_n})"
@torch.no_grad()
def _predict_all(self,
a: List[str],
b: List[str],
**kwargs,
) -> List[DifferenceSample]:
outputs_a = self.encode_batch(a, **kwargs)
outputs_b = self.encode_batch(b, **kwargs)
subwords_by_words_a = [self._get_subwords_by_word(sentence) for sentence in a]
subwords_by_words_b = [self._get_subwords_by_word(sentence) for sentence in b]
ngrams_a = [self._get_ngrams(subwords_by_word) for subwords_by_word in subwords_by_words_a]
ngrams_b = [self._get_ngrams(subwords_by_word) for subwords_by_word in subwords_by_words_b]
sentence_embeddings_a = self._get_full_sentence_embeddings(outputs_a, [list(itertools.chain.from_iterable(subwords)) for subwords in subwords_by_words_a])
sentence_embeddings_b = self._get_full_sentence_embeddings(outputs_b, [list(itertools.chain.from_iterable(subwords)) for subwords in subwords_by_words_b])
full_similarities = pairwise_cos_sim(sentence_embeddings_a, sentence_embeddings_b)
all_labels_a = []
all_labels_b = []
for i in range(len(a)):
partial_embeddings_a = self._get_partial_sentence_embeddings_for_sample(outputs_a[i], ngrams_a[i])
partial_embeddings_b = self._get_partial_sentence_embeddings_for_sample(outputs_b[i], ngrams_b[i])
partial_similarities_a = cos_sim(partial_embeddings_a, sentence_embeddings_b[i].unsqueeze(0)).squeeze(1)
partial_similarities_b = cos_sim(partial_embeddings_b, sentence_embeddings_a[i].unsqueeze(0)).squeeze(1)
ngram_labels_a = (partial_similarities_a - full_similarities[i] + 1) / 2
ngram_labels_b = (partial_similarities_b - full_similarities[i] + 1) / 2
subword_labels_a = self._distribute_ngram_labels_to_subwords(ngram_labels_a, ngrams_a[i])
subword_labels_b = self._distribute_ngram_labels_to_subwords(ngram_labels_b, ngrams_b[i])
labels_a = self._subword_labels_to_word_labels(subword_labels_a, subwords_by_words_a[i])
labels_b = self._subword_labels_to_word_labels(subword_labels_b, subwords_by_words_b[i])
all_labels_a.append(labels_a)
all_labels_b.append(labels_b)
samples = []
for i in range(len(a)):
samples.append(DifferenceSample(
tokens_a=tuple(a[i].split()),
tokens_b=tuple(b[i].split()),
labels_a=tuple(all_labels_a[i]),
labels_b=tuple(all_labels_b[i]),
))
return samples
def _get_full_sentence_embeddings(self, token_embeddings: torch.Tensor, include_subwords: List[List[int]]) -> torch.Tensor:
"""
:param token_embeddings: batch x seq_len x dim
:param include_subwords: batch x num_subwords
:return: A tensor of shape batch x dim
"""
pool_mask = torch.zeros(token_embeddings.shape[0], token_embeddings.shape[1], device=token_embeddings.device)
for i, subword_indices in enumerate(include_subwords):
pool_mask[i, subword_indices] = 1
sentence_embeddings = self._pool(token_embeddings, pool_mask)
return sentence_embeddings
def _get_partial_sentence_embeddings_for_sample(self, token_embeddings: torch.Tensor, ngrams: List[Ngram]) -> torch.Tensor:
"""
:param token_embeddings: seq_len x dim
:param ngrams: num_ngrams x n
:return: A tensor of shape num_ngrams x dim
"""
pool_mask = torch.zeros(len(ngrams), token_embeddings.shape[0], device=token_embeddings.device)
pool_mask[:, list(itertools.chain.from_iterable(ngrams))] = 1
for i, subword_indices in enumerate(ngrams):
pool_mask[i, subword_indices] = 0
partial_embeddings = self._pool(token_embeddings.unsqueeze(0).repeat(len(ngrams), 1, 1), pool_mask)
return partial_embeddings
def _distribute_ngram_labels_to_subwords(self, ngram_labels: torch.Tensor, ngrams: List[Ngram]) -> torch.Tensor:
"""
:param ngram_labels: num_ngrams
:param ngrams: num_ngrams x n
:return: num_subwords
"""
max_subword_idx = max(itertools.chain.from_iterable(ngrams))
subword_contributions = torch.zeros(max_subword_idx + 1, device=ngram_labels.device)
contribution_count = torch.zeros(max_subword_idx + 1, device=ngram_labels.device)
for i, ngram in enumerate(ngrams):
subword_contributions[ngram] += ngram_labels[i] / len(ngram)
contribution_count[ngram] += 1 / len(ngram)
subword_contributions /= contribution_count
return subword_contributions
class DiffDelWithReencode(FeatureExtractionRecognizer):
"""
Version of DiffDel that encodes the partial sentences from scratch (instead of encoding the full sentence once and
then excluding hidden states from the mean)
"""
def __init__(self,
model_name_or_path: str = None,
pipeline: Union[FeatureExtractionPipeline, Pipeline] = None,
layer: int = -1,
batch_size: int = 16,
):
super().__init__(model_name_or_path, pipeline, layer, batch_size)
def __str__(self):
return f"DiffDelWithReencode(model={self.pipeline.model.name_or_path}, layer={self.layer})"
@torch.no_grad()
def _predict_all(self,
a: List[str],
b: List[str],
**kwargs,
) -> List[DifferenceSample]:
a_words = [sentence.split() for sentence in a]
b_words = [sentence.split() for sentence in b]
a_words_partial = []
b_words_partial = []
for words in a_words:
for i, word in enumerate(words):
partial = deepcopy(words)
del partial[i]
a_words_partial.append(partial)
for words in b_words:
for i, word in enumerate(words):
partial = deepcopy(words)
del partial[i]
b_words_partial.append(partial)
a_partial = [" ".join([word for word in words if word]) for words in a_words_partial]
b_partial = [" ".join([word for word in words if word]) for words in b_words_partial]
a_num_partial = [len(words) for words in a_words]
b_num_partial = [len(words) for words in b_words]
a_embedding_full = self._encode_and_pool(a, **kwargs)
b_embedding_full = self._encode_and_pool(b, **kwargs)
a_embeddings_partial = []
b_embeddings_partial = []
for i in range(0, len(a_partial), self.batch_size):
a_embeddings_partial_batch = self._encode_and_pool(a_partial[i:i + self.batch_size], **kwargs)
a_embeddings_partial.append(a_embeddings_partial_batch)
for i in range(0, len(b_partial), self.batch_size):
b_embeddings_partial_batch = self._encode_and_pool(b_partial[i:i + self.batch_size], **kwargs)
b_embeddings_partial.append(b_embeddings_partial_batch)
a_embeddings_partial = torch.cat(a_embeddings_partial, dim=0)
b_embeddings_partial = torch.cat(b_embeddings_partial, dim=0)
labels_a = []
labels_b = []
similarity_full = pairwise_cos_sim(a_embedding_full, b_embedding_full)
for i in range(len(a)):
a_embeddings_partial_i = a_embeddings_partial[sum(a_num_partial[:i]):sum(a_num_partial[:i + 1])]
similarities_partial = pairwise_cos_sim(a_embeddings_partial_i, b_embedding_full[i].unsqueeze(0)).squeeze(0)
labels = (similarities_partial - similarity_full[i] + 1) / 2
labels = labels.detach().cpu().tolist()
if isinstance(labels, float):
labels = [labels]
assert len(labels) == len(a_words[i])
labels_a.append(labels)
for i in range(len(b)):
b_embeddings_partial_i = b_embeddings_partial[sum(b_num_partial[:i]):sum(b_num_partial[:i + 1])]
similarities_partial = pairwise_cos_sim(b_embeddings_partial_i, a_embedding_full[i].unsqueeze(0)).squeeze(0)
labels = (similarities_partial - similarity_full[i] + 1) / 2
labels = labels.detach().cpu().tolist()
if isinstance(labels, float):
labels = [labels]
assert len(labels) == len(b_words[i])
labels_b.append(labels)
samples = []
for i in range(len(a)):
samples.append(DifferenceSample(
tokens_a=tuple(a_words[i]),
tokens_b=tuple(b_words[i]),
labels_a=tuple(labels_a[i]),
labels_b=tuple(labels_b[i]),
))
return samples
def _encode_and_pool(self, sentences: List[str], **kwargs) -> torch.Tensor:
model_inputs = self.pipeline.tokenizer(sentences, return_tensors="pt", padding=True, truncation=True)
model_inputs = model_inputs.to(self.pipeline.device)
outputs = self.pipeline.model(**model_inputs, output_hidden_states=True, **kwargs)
if self.layer == "mean":
token_embeddings = torch.stack(outputs.hidden_states, dim=0).mean(dim=0)
else:
assert isinstance(self.layer, int)
token_embeddings = outputs.hidden_states[self.layer]
mask = model_inputs["attention_mask"]
sentence_embeddings = torch.sum(token_embeddings * mask.unsqueeze(-1), dim=1)
return sentence_embeddings
|