Spaces:
Running
A newer version of the Streamlit SDK is available:
1.42.2
Guide d'installation locale de l'application
Installer l'application
Créez un nouveau projet dans PyCharm (ou l'IDE de votre choix).
Après vous être assuré de la présence d'un environnement virtuel, tapez
git lfs install
dans le terminal de PyCharm.Téléchargez le dépôt de l'application en tapant
git clone https://huggingface.co/spaces/a-menu/arches_demo
dans le terminal.Déplacez-vous à la racine de l'application avec
cd arches_demo
, puis tapezpip install -r requirements.txt
.
Lancer l'application
Chaque fois que vous désirez lancer l'application, ouvrez le projet dans PyCharm et tapez dans le terminal
streamlit run app.py
(sans réitérer les étapes précédentes de l'installation).Pour fermer l'application, faites
ctrl + c
dans le terminal de PyCharm.Pour forcer l'application à se fermer, vous pouvez fermer le terminal.
Relier l'application à sa carte graphique
Ce guide est à destination des cartes graphiques NVIDIA.
L'application utilise le CPU par défaut. Pour accélérer l'application du modèle, nous vous conseillons d'utiliser votre GPU.
Pour ce faire, réalisez (une fois) les actions suivantes dans le terminal de votre IDE, application fermée :
Installez si nécessaire le CUDA Toolkit à partir du site de NVIDIA : https://developer.nvidia.com/cuda-toolkit-archive .
Vérifiez votre version de CUDA en tapant
nvcc --version
dans le terminal (regarder la ligne "CUDA compilation tools, release [numéro de version]").Pour les versions de CUDA 11.2 à 11.8, tapez ensuite
pip install cupy-cuda11x
. Pour les versions de CUDA 12.x, tapezpip install cupy-cuda12x
.Installez ensuite PyTorch en suivant les instructions trouvables à l'adresse suivante : https://pytorch.org/get-started/locally/ (pensez à bien spécifier votre version de CUDA). Par exemple, pour la version 12.1 de CUDA, tapez
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
.Installez enfin la version appropriée de spacy cuda avec la commande
pip install 'spacy[cudaYYx]'
, en remplaçant YY par votre version de CUDA. Par exemple, pour la version 12.1 de CUDA, tapezpip install 'spacy[cuda12x]'
.Vous pouvez désormais lancer normalement l'application avec
streamlit run app.py
; un voyant vert attestant de la reconnaissance de votre GPU devrait s'afficher au sommet de la page.