Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForQuestionAnswering, pipeline | |
# Load the model and tokenizer from your Hugging Face Hub repository | |
model_checkpoint = "abdulllah01/checkpoints" # Replace with your actual checkpoint | |
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) | |
model = AutoModelForQuestionAnswering.from_pretrained(model_checkpoint) | |
# Create a pipeline for question answering | |
qa_pipeline = pipeline("question-answering", model=model, tokenizer=tokenizer) | |
# Streamlit UI setup | |
st.title("Question Answering App") | |
st.write("Enter a context and ask a question based on that context.") | |
# Text area for context input | |
context = st.text_area("Context:", "") | |
# Text input for the question | |
question = st.text_input("Question:", "") | |
if st.button("Get Answer"): | |
if context and question: | |
# Generate the answer using the pipeline | |
result = qa_pipeline(question=question, context=context) | |
answer = result['answer'] | |
st.write("**Answer:**", answer) | |
else: | |
st.write("Please enter both context and question.") | |