File size: 2,218 Bytes
14415d3
13a7a5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e6c847
13a7a5d
 
 
6719397
13a7a5d
 
09fc863
13a7a5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import streamlit as st
from huggingface_hub import HfApi
import os
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
from typing import List, Dict
from supplemental import Agent, Tool, CodeGenerationTool, DataRetrievalTool, TextGenerationTool, CodeExecutionTool, CodeDebuggingTool, CodeSummarizationTool, CodeTranslationTool, CodeOptimizationTool, CodeDocumentationTool, ImageGenerationTool, ImageEditingTool, ImageAnalysisTool, Workflow, EnhancedAIAgent

st.title("CODEFUSSION ☄")

# Access Hugging Face API key from secrets
hf_token = st.secrets["hf_token"]
if not hf_token:
    st.error("Hugging Face API key not found. Please make sure it is set in the secrets.")

# --- Agent Pool ---
agent_pool = {
    "IdeaIntake": EnhancedAIAgent("IdeaIntake", "Idea Intake", ["Data Retrieval", "Code Generation", "Text Generation"], "bigcode/starcoder"),
    "CodeBuilder": EnhancedAIAgent("CodeBuilder", "Code Builder", ["Code Generation", "Code Debugging", "Code Optimization"], "bigcode/starcoder"),
    "ImageCreator": EnhancedAIAgent("ImageCreator", "Image Creator", ["Image Generation", "Image Editing"], "bigcode/starcoder"),
}

# --- Workflow Definitions ---
class Workflow:
    def __init__(self, name, agents, task, description):
        self.name = name
        self.agents = agents
        self.task = task
        self.description = description

    def run(self, prompt, context):
        # Workflow execution logic
        for agent in self.agents:
            action = agent.act(prompt, context)
            # Execute the tool
            if action.get("tool"):
                tool = next((t for t in agent.tools if t.name == action["tool"]), None)
                if tool:
                    output = tool.run(action["arguments"])
                    # Update context
                    context.update(output)

# Example usage
workflow = Workflow(
    name="Example Workflow",
    agents=[agent_pool["IdeaIntake"], agent_pool["CodeBuilder"]],
    task="Generate and debug code",
    description="A workflow to generate and debug code using AI agents."
)

context = {}
prompt = "Create a Python function to add two numbers."
workflow.run(prompt, context)
st.write(context)