Spaces:
Runtime error
Runtime error
File size: 3,997 Bytes
14415d3 1c2e9be 14415d3 1c2e9be 14415d3 1c2e9be cef0a6e 14415d3 1c2e9be cef0a6e 14415d3 1c2e9be cef0a6e 14415d3 ac15cea 14415d3 1c2e9be ac15cea 1c2e9be 14415d3 ac15cea 14415d3 1c2e9be 14415d3 ac15cea 14415d3 1c2e9be 1d0c268 d249eac 14415d3 ac15cea 14415d3 d4f68f1 1c2e9be 14415d3 1d0c268 14415d3 ac15cea 14415d3 ac15cea 1c2e9be ac15cea 263c6c5 14415d3 ac15cea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
import streamlit as st
from huggingface_hub import InferenceClient
import os
st.title("CODEFUSSION ☄")
base_url = "https://api-inference.huggingface.co/models/"
API_KEY = os.environ.get('HUGGINGFACE_API_KEY')
model_links = {
"LegacyLift🚀": base_url + "mistralai/Mistral-7B-Instruct-v0.2",
"ModernMigrate⭐": base_url + "mistralai/Mixtral-8x7B-Instruct-v0.1",
"RetroRecode🔄": base_url + "microsoft/Phi-3-mini-4k-instruct"
}
model_info = {
"LegacyLift🚀": {
'description': """The LegacyLift model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
\nThis model is best for minimal problem-solving, content writing, and daily tips.\n""",
'logo': './11.jpg'
},
"ModernMigrate⭐": {
'description': """The ModernMigrate model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
\nThis model excels in coding, logical reasoning, and high-speed inference. \n""",
'logo': './2.jpg'
},
"RetroRecode🔄": {
'description': """The RetroRecode model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
\nThis model is best suited for critical development, practical knowledge, and serverless inference.\n""",
'logo': './3.jpg'
},
}
def format_prompt(message, conversation_history, custom_instructions=None):
prompt = ""
if custom_instructions:
prompt += f"[INST] {custom_instructions} [/INST]"
prompt += "[CONV_HISTORY]\n"
for role, content in conversation_history:
prompt += f"{role.upper()}: {content}\n"
prompt += "[/CONV_HISTORY]"
prompt += f"[INST] {message} [/INST]"
return prompt
def reset_conversation():
'''
Resets Conversation
'''
st.session_state.messages = []
st.session_state.conversation_history = []
if "messages" not in st.session_state:
st.session_state.messages = []
st.session_state.conversation_history = []
models = [key for key in model_links.keys()]
selected_model = st.sidebar.selectbox("Select Model", models)
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, 0.5)
st.sidebar.button('Reset Chat', on_click=reset_conversation)
st.sidebar.write(f"You're now chatting with **{selected_model}**")
st.sidebar.markdown(model_info[selected_model]['description'])
st.sidebar.image(model_info[selected_model]['logo'])
st.sidebar.markdown("*Generating the code might go slow if you are using low power resources *")
if "prev_option" not in st.session_state:
st.session_state.prev_option = selected_model
if st.session_state.prev_option != selected_model:
st.session_state.messages = []
st.session_state.conversation_history = []
st.session_state.prev_option = selected_model
repo_id = model_links[selected_model]
st.subheader(f'{selected_model}')
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
if prompt := st.chat_input(f"Hi I'm {selected_model}, How can I help you today?"):
custom_instruction = "Act like a Human in conversation"
with st.chat_message("user"):
st.markdown(prompt)
st.session_state.messages.append({"role": "user", "content": prompt})
st.session_state.conversation_history.append(("user", prompt))
formatted_text = format_prompt(prompt, st.session_state.conversation_history, custom_instruction)
with st.chat_message("assistant"):
client = InferenceClient(model=model_links[selected_model])
output = client.text_generation(formatted_text, temperature=temp_values, max_new_tokens=3000, stream=True)
response = "".join([chunk for chunk in output])
st.markdown(response)
st.session_state.messages.append({"role": "assistant", "content": response})
st.session_state.conversation_history.append(("assistant", response))
|