triAGI-Coder / app.py
sainathBelagavi's picture
Update app.py
07426b3 verified
raw
history blame
5.46 kB
import streamlit as st
from huggingface_hub import InferenceClient
import os
import sys
import pickle
st.title("CODEFUSSION ☄")
base_url = "https://api-inference.huggingface.co/models/"
API_KEY = os.environ.get('HUGGINGFACE_API_KEY')
model_links = {
"LegacyLift🚀": base_url + "mistralai/Mistral-7B-Instruct-v0.2",
"ModernMigrate⭐": base_url + "mistralai/Mixtral-8x7B-Instruct-v0.1",
"RetroRecode🔄": base_url + "microsoft/Phi-3-mini-4k-instruct"
}
model_info = {
"LegacyLift🚀": {
'description': """The LegacyLift model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \n\nThis model is best for minimal problem-solving, content writing, and daily tips.\n""",
'logo': './11.jpg'
},
"ModernMigrate⭐": {
'description': """The ModernMigrate model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \n\nThis model excels in coding, logical reasoning, and high-speed inference. \n""",
'logo': './2.jpg'
},
"RetroRecode🔄": {
'description': """The RetroRecode model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \n\nThis model is best suited for critical development, practical knowledge, and serverless inference.\n""",
'logo': './3.jpg'
},
}
def format_promt(message, conversation_history, custom_instructions=None):
prompt = ""
if custom_instructions:
prompt += f"\[INST\] {custom_instructions} \[/INST\]\n"
# Add conversation history to the prompt
prompt += "\[CONV_HISTORY\]\n"
for role, content in conversation_history:
prompt += f"{role.upper()}: {content}\n"
prompt += "\[/CONV_HISTORY\]\n"
# Add the current message
prompt += f"\[INST\] {message} \[/INST\]\n"
# Add the response format
prompt += "\[RESPONSE\]\n"
return prompt
def reset_conversation():
'''
Resets Conversation
'''
st.session_state.conversation = []
st.session_state.messages = []
st.session_state.chat_state = "reset"
def load_conversation_history():
history_file = "conversation_history.pickle"
if os.path.exists(history_file):
with open(history_file, "rb") as f:
conversation_history = pickle.load(f)
else:
conversation_history = []
return conversation_history
def save_conversation_history(conversation_history):
history_file = "conversation_history.pickle"
with open(history_file, "wb") as f:
pickle.dump(conversation_history, f)
models = [key for key in model_links.keys()]
selected_model = st.sidebar.selectbox("Select Model", models)
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, (0.5))
st.sidebar.button('Reset Chat', on_click=reset_conversation) # Reset button
st.sidebar.write(f"You're now chatting with **{selected_model}**")
st.sidebar.markdown(model_info[selected_model]['description'])
st.sidebar.image(model_info[selected_model]['logo'])
st.sidebar.markdown("\*Generating the code might go slow if you are using low power resources \*")
if "prev_option" not in st.session_state:
st.session_state.prev_option = selected_model
if st.session_state.prev_option != selected_model:
st.session_state.messages = []
st.session_state.prev_option = selected_model
if "chat_state" not in st.session_state:
st.session_state.chat_state = "normal"
# Load the conversation history from the file
if "messages" not in st.session_state:
st.session_state.messages = load_conversation_history()
repo_id = model_links[selected_model]
st.subheader(f'{selected_model}')
if st.session_state.chat_state == "normal":
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
if prompt := st.chat_input(f"Hi I'm {selected_model}, How can I help you today?"):
custom_instruction = "Act like a Human in conversation"
with st.chat_message("user"):
st.markdown(prompt)
st.session_state.messages.append({"role": "user", "content": prompt})
conversation_history = [(message["role"], message["content"]) for message in st.session_state.messages]
formated_text = format_promt(prompt, conversation_history, custom_instruction)
with st.chat_message("assistant"):
client = InferenceClient(
model=model_links[selected_model], )
max_new_tokens = 2048 # Adjust this value as needed
try:
output = client.text_generation(
formated_text,
temperature=temp_values,
max_new_tokens=max_new_tokens,
stream=True
)
response = st.write_stream(output)
except ValueError as e:
if "Input validation error" in str(e):
st.error("Error: The input prompt is too long. Please try a shorter prompt.")
else:
st.error(f"An error occurred: {e}")
else:
st.session_state.messages.append({"role": "assistant", "content": response})
save_conversation_history(st.session_state.messages)
elif st.session_state.chat_state == "reset":
st.session_state.chat_state = "normal"
st.experimental_rerun()