Spaces:
Runtime error
Runtime error
File size: 1,811 Bytes
424c611 d3a775f 424c611 4ed7662 424c611 4ed7662 424c611 4ed7662 424c611 4ed7662 88b8568 4ed7662 d3a775f 4ed7662 d3a775f 4ed7662 d3a775f 88b8568 6e842e3 88b8568 4ed7662 d3a775f 424c611 4ed7662 424c611 fa64ddb d3a775f 424c611 4ed7662 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
# AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb.
# %% auto 0
__all__ = ['df', 'columns_to_click', 'title', 'description', 'dtypes', 'make_clickable_cell', 'value_func']
# %% app.ipynb 0
import gradio as gr
import pandas as pd
# %% app.ipynb 1
df = pd.read_csv(
"https://docs.google.com/spreadsheets/d/e/2PACX-1vSC40sszorOjHfozmNqJT9lFiJhG94u3fbr3Ss_7fzcU3xqqJQuW1Ie_SNcWEB-uIsBi9NBUK7-ddet/pub?output=csv",
skiprows=1,
)
# %% app.ipynb 2
# Drop footers
df = df.copy()[~df["Model"].isna()]
# %% app.ipynb 3
# Drop TBA models
df = df.copy()[df["Parameters \n(B)"] != "TBA"]
# %% app.ipynb 6
def make_clickable_cell(cell):
if pd.isnull(cell):
return ""
else:
return f'<a target="_blank" href="{cell}">{cell}</a>'
# %% app.ipynb 7
columns_to_click = ["Paper / Repo", "Selected \nplaygrounds"]
for col in columns_to_click:
df[col] = df[col].apply(make_clickable_cell)
# %% app.ipynb 9
title = """<h1 align="center">The Large Language Models Landscape</h1>"""
description = """Large Language Models (LLMs) today come in a variety architectures and capabilities. This interactive landscape provides a visual overview of the most important LLMs, including their training data, size, release date, and whether they are openly accessible or not. It also includes notes on each model to provide additional context. This landscape is derived from data compiled by Dr. Alan D. Thompson at [lifearchitect.ai/models](https://lifearchitect.ai/models/).
"""
# %% app.ipynb 10
dtypes = ["str" if c not in columns_to_click else "markdown" for c in df.columns]
# %% app.ipynb 11
def value_func():
return df
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown(description)
gr.components.DataFrame(value=value_func, datatype=dtypes)
demo.launch()
|