Spaces:
Runtime error
Runtime error
File size: 1,843 Bytes
424c611 b948f2d 424c611 4ed7662 424c611 b948f2d 4ed7662 b948f2d 424c611 b948f2d 4ed7662 424c611 b948f2d 4ed7662 b948f2d 4ed7662 b948f2d d3a775f b948f2d 88b8568 4ed7662 b948f2d d3a775f b948f2d 424c611 4ed7662 b948f2d 424c611 fa64ddb b948f2d 4ed7662 b948f2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
# AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb.
# %% auto 0
__all__ = ['columns_to_click', 'title', 'description', 'dtypes', 'get_data']
# %% app.ipynb 0
import gradio as gr
import pandas as pd
# %% app.ipynb 1
columns_to_click = ["Paper / Repo", "Selected \nplaygrounds"]
def get_data():
df = pd.read_csv(
"https://docs.google.com/spreadsheets/d/e/2PACX-1vRWb_zuw94rX7xTvlxNICdfDhHN-Jhp1QyTNVWHf6x4SE_gRjrpkNM_UpMXivl5DhMTDM5ehC1EQQb7/pub?output=csv",
skiprows=1,
)
# %% app.ipynb 2
# Drop footers
df = df.copy()[~df["Model"].isna()]
# %% app.ipynb 3
# Drop TBA models
df = df.copy()[df["Parameters \n(B)"] != "TBA"]
# %% app.ipynb 6
def make_clickable_cell(cell):
if pd.isnull(cell):
return ""
else:
return f'<a target="_blank" href="{cell}">{cell}</a>'
# %% app.ipynb 7
for col in columns_to_click:
df[col] = df[col].apply(make_clickable_cell)
return df
# %% app.ipynb 2
title = """<h1 align="center">The Large Language Models Landscape</h1>"""
description = """Large Language Models (LLMs) today come in a variety architectures and capabilities. This interactive landscape provides a visual overview of the most important LLMs, including their training data, size, release date, and whether they are openly accessible or not. It also includes notes on each model to provide additional context. This landscape is derived from data compiled by Dr. Alan D. Thompson at [lifearchitect.ai](https://lifearchitect.ai).
"""
# %% app.ipynb 3
dtypes = ["str" if c not in columns_to_click else "markdown" for c in get_data().columns]
# %% app.ipynb 4
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown(description)
gr.DataFrame(get_data, datatype=dtypes, every=60)
demo.queue().launch()
|