|
import os |
|
import cv2 |
|
import paddlehub as hub |
|
import gradio as gr |
|
import torch |
|
|
|
torch.hub.download_url_to_file('https://cdn.pixabay.com/photo/2016/10/21/14/46/fox-1758183_1280.jpg', 'fox.jpg') |
|
|
|
model = hub.Module(name='U2Net') |
|
|
|
def infer(webcam, img,option): |
|
if option == "webcam": |
|
webcam.save('temp.jpg') |
|
result = model.Segmentation( |
|
images=[cv2.imread("temp.jpg")], |
|
paths=None, |
|
batch_size=1, |
|
input_size=320, |
|
output_dir='output', |
|
visualization=True) |
|
else: |
|
img.save('temp.jpg') |
|
result = model.Segmentation( |
|
images=[cv2.imread("temp.jpg")], |
|
paths=None, |
|
batch_size=1, |
|
input_size=320, |
|
output_dir='output', |
|
visualization=True) |
|
return result[0]['front'][:,:,::-1], result[0]['mask'] |
|
|
|
inputs = [gr.inputs.Image(source="webcam", label="Webcam", type="pil",optional=True),gr.inputs.Image(source="upload", label="Input Image", type="pil",optional=True),gr.inputs.Radio(choices=["webcam","Image"], type="value", default="Image", label="Input Type")] |
|
outputs = [ |
|
gr.outputs.Image(type="numpy",label="Front"), |
|
gr.outputs.Image(type="numpy",label="Mask") |
|
] |
|
|
|
title = "U^2-Net" |
|
description = "demo for U^2-Net. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." |
|
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2005.09007'>U^2-Net: Going Deeper with Nested U-Structure for Salient Object Detection</a> | <a href='https://github.com/xuebinqin/U-2-Net'>Github Repo</a></p>" |
|
|
|
examples = [ |
|
['fox.jpg','fox.jpg','Image'], |
|
] |
|
|
|
|
|
gr.Interface(infer, inputs, outputs, title=title, description=description, article=article, examples=examples).launch() |