Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import GPT2LMHeadModel, GPT2Tokenizer | |
def load_model(): | |
model = GPT2LMHeadModel.from_pretrained("finetuned-distilgpt2") | |
tokenizer = GPT2Tokenizer.from_pretrained("finetuned-distilgpt2") | |
tokenizer.pad_token = tokenizer.eos_token | |
return model, tokenizer | |
model, tokenizer = load_model() | |
def chat_with_model(query): | |
inputs = tokenizer.encode(query, return_tensors="pt", padding=True, truncation=True, max_length=512) | |
outputs = model.generate( | |
inputs, | |
max_length=150, | |
num_return_sequences=1, | |
no_repeat_ngram_size=2, | |
top_k=50, | |
top_p=0.95, | |
temperature=1.0, | |
pad_token_id=tokenizer.pad_token_id, | |
) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response | |
st.title("Chat with Akshay") | |
st.text("Fine-tuned GPT-2 for interactive conversations about me.") | |
user_input = st.text_input("You:", placeholder="Type your message here...") | |
if user_input: | |
response = chat_with_model(user_input) | |
st.text_area("GPT-2 as Akshay:", response, height=200) | |