ChatWithMe / app.py
akshaysatyam2's picture
Added streamlit application file.
4d3abab
import streamlit as st
from transformers import GPT2LMHeadModel, GPT2Tokenizer
@st.cache_resource
def load_model():
model = GPT2LMHeadModel.from_pretrained("finetuned-distilgpt2")
tokenizer = GPT2Tokenizer.from_pretrained("finetuned-distilgpt2")
tokenizer.pad_token = tokenizer.eos_token
return model, tokenizer
model, tokenizer = load_model()
def chat_with_model(query):
inputs = tokenizer.encode(query, return_tensors="pt", padding=True, truncation=True, max_length=512)
outputs = model.generate(
inputs,
max_length=150,
num_return_sequences=1,
no_repeat_ngram_size=2,
top_k=50,
top_p=0.95,
temperature=1.0,
pad_token_id=tokenizer.pad_token_id,
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
st.title("Chat with Akshay")
st.text("Fine-tuned GPT-2 for interactive conversations about me.")
user_input = st.text_input("You:", placeholder="Type your message here...")
if user_input:
response = chat_with_model(user_input)
st.text_area("GPT-2 as Akshay:", response, height=200)