|
import base64 |
|
from io import BytesIO |
|
|
|
import torch |
|
from PIL import Image |
|
from transformers import StoppingCriteria |
|
|
|
from .constants import IMAGE_TOKEN_INDEX |
|
|
|
|
|
def load_image_from_base64(image): |
|
return Image.open(BytesIO(base64.b64decode(image))) |
|
|
|
|
|
def process_images(images, image_processor, model_cfg): |
|
return image_processor(images, return_tensors="pt")["pixel_values"] |
|
|
|
|
|
def tokenizer_image_token( |
|
prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None |
|
): |
|
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split("<image>")] |
|
|
|
def insert_separator(X, sep): |
|
return [ele for sublist in zip(X, [sep] * len(X)) for ele in sublist][:-1] |
|
|
|
input_ids = [] |
|
offset = 0 |
|
if ( |
|
len(prompt_chunks) > 0 |
|
and len(prompt_chunks[0]) > 0 |
|
and prompt_chunks[0][0] == tokenizer.bos_token_id |
|
): |
|
offset = 1 |
|
input_ids.append(prompt_chunks[0][0]) |
|
|
|
for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)): |
|
input_ids.extend(x[offset:]) |
|
|
|
if return_tensors is not None: |
|
if return_tensors == "pt": |
|
return torch.tensor(input_ids, dtype=torch.long) |
|
raise ValueError(f"Unsupported tensor type: {return_tensors}") |
|
return input_ids |
|
|
|
|
|
def get_model_name_from_path(model_path): |
|
model_path = model_path.strip("/") |
|
model_paths = model_path.split("/") |
|
if model_paths[-1].startswith("checkpoint-"): |
|
return model_paths[-2] + "_" + model_paths[-1] |
|
else: |
|
return model_paths[-1] |
|
|
|
|
|
class KeywordsStoppingCriteria(StoppingCriteria): |
|
def __init__(self, keywords, tokenizer, input_ids): |
|
self.keywords = keywords |
|
self.keyword_ids = [] |
|
for keyword in keywords: |
|
cur_keyword_ids = tokenizer(keyword).input_ids |
|
if ( |
|
len(cur_keyword_ids) > 1 |
|
and cur_keyword_ids[0] == tokenizer.bos_token_id |
|
): |
|
cur_keyword_ids = cur_keyword_ids[1:] |
|
self.keyword_ids.append(torch.tensor(cur_keyword_ids)) |
|
self.tokenizer = tokenizer |
|
self.start_len = input_ids.shape[1] |
|
|
|
def __call__( |
|
self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs |
|
) -> bool: |
|
assert output_ids.shape[0] == 1, "Only support batch size 1 (yet)" |
|
offset = min(output_ids.shape[1] - self.start_len, 3) |
|
self.keyword_ids = [ |
|
keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids |
|
] |
|
for keyword_id in self.keyword_ids: |
|
if output_ids[0, -keyword_id.shape[0] :] == keyword_id: |
|
return True |
|
outputs = self.tokenizer.batch_decode( |
|
output_ids[:, -offset:], skip_special_tokens=True |
|
)[0] |
|
for keyword in self.keywords: |
|
if keyword in outputs: |
|
return True |
|
return False |
|
|