File size: 6,729 Bytes
33c3d7d
 
86567ab
33c3d7d
 
 
 
731c2c3
33c3d7d
 
 
 
 
b2eb80d
86567ab
 
b2eb80d
86567ab
b2eb80d
33c3d7d
 
 
 
 
 
 
 
86567ab
33c3d7d
 
 
 
 
 
 
 
 
 
86567ab
33c3d7d
 
 
 
 
 
 
b2eb80d
33c3d7d
 
 
 
 
b2eb80d
33c3d7d
 
b2eb80d
33c3d7d
 
 
 
 
 
 
b2eb80d
 
33c3d7d
b2eb80d
33c3d7d
 
b2eb80d
33c3d7d
b2eb80d
 
 
 
 
 
 
 
 
86567ab
b2eb80d
 
 
 
 
 
 
 
 
 
86567ab
b2eb80d
 
 
 
 
 
 
 
86567ab
b2eb80d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33c3d7d
b2eb80d
 
 
 
33c3d7d
b2eb80d
 
 
 
 
 
 
33c3d7d
b2eb80d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import gradio as gr
#import torch
import yolov7
import subprocess
import tempfile
import time
from pathlib import Path
import uuid
import cv2
import gradio as gr



# # Images
# #torch.hub.download_url_t
# o_file('https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg', 'zidane.jpg')
# #torch.hub.download_url_to_file('https://raw.githubusercontent.com/obss/sahi/main/tests/data/small-vehicles1.jpeg', 'small-vehicles1.jpeg')

   
def image_fn(
    image: gr.inputs.Image = None,
    model_path: gr.inputs.Dropdown = None,
    image_size: gr.inputs.Slider = 640,
    conf_threshold: gr.inputs.Slider = 0.25,
    iou_threshold: gr.inputs.Slider = 0.45,
):
    """
    YOLOv7 inference function
    Args:
        image: Input image
        model_path: Path to the model
        image_size: Image size
        conf_threshold: Confidence threshold
        iou_threshold: IOU threshold
    Returns:
        Rendered image
    """

    model = yolov7.load(model_path, device="cpu", hf_model=True, trace=False)
    model.conf = conf_threshold
    model.iou = iou_threshold
    results = model([image], size=image_size)
    return results.render()[0]
  


demo_app = gr.Interface(
    fn=image_fn,
    inputs=[
    gr.inputs.Image(type="pil", label="Input Image"),
    gr.inputs.Dropdown(
        choices=[
            "alshimaa/yolo5_epoch100",
            #"kadirnar/yolov7-v0.1",
        ],
        default="alshimaa/yolo5_epoch100",
        label="Model",
    )
    #gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size")
    #gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
    #gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold")
],
    outputs=gr.outputs.Image(type="filepath", label="Output Image"),
    title="Object Detector: Identify People Without Mask",
    examples=[['img1.png', 'alshimaa/yolo5_epoch100', 640, 0.25, 0.45], ['img2.png', 'alshimaa/yolo5_epoch100', 640, 0.25, 0.45], ['img3.png', 'alshimaa/yolo5_epoch100', 640, 0.25, 0.45]],
    cache_examples=True,
    live=True,
    theme='huggingface',
)
demo_app.launch(debug=True, enable_queue=True)

    
# def image_fn(
#     image: gr.inputs.Image = None,
#     model_path: gr.inputs.Dropdown = None,
#     image_size: gr.inputs.Slider = 640,
#     conf_threshold: gr.inputs.Slider = 0.25,
#     iou_threshold: gr.inputs.Slider = 0.45,
# ):
#     """
#     YOLOv7 inference function
#     Args:
#         image: Input image
#         model_path: Path to the model
#         image_size: Image size
#         conf_threshold: Confidence threshold
#         iou_threshold: IOU threshold
#     Returns:
#         Rendered image
#     """

#     model = yolov7.load(model_path, device="cpu", hf_model=True, trace=False)
#     model.conf = conf_threshold
#     model.iou = iou_threshold
#     results = model([image], size=image_size)
#     return results.render()[0]
  
  
        
# def video_fn(model_path, video_file, conf_thres, iou_thres, start_sec, duration):
#     model = yolov7.load(model_path, device="cpu", hf_model=True, trace=False)
#     start_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec))
#     end_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec + duration))

#     suffix = Path(video_file).suffix

#     clip_temp_file = tempfile.NamedTemporaryFile(suffix=suffix)
#     subprocess.call(
#         f"ffmpeg -y -ss {start_timestamp} -i {video_file} -to {end_timestamp} -c copy {clip_temp_file.name}".split()
#     )

#     # Reader of clip file
#     cap = cv2.VideoCapture(clip_temp_file.name)

#     # This is an intermediary temp file where we'll write the video to
#     # Unfortunately, gradio doesn't play too nice with videos rn so we have to do some hackiness
#     # with ffmpeg at the end of the function here.
#     with tempfile.NamedTemporaryFile(suffix=".mp4") as temp_file:
#         out = cv2.VideoWriter(temp_file.name, cv2.VideoWriter_fourcc(*"MP4V"), 30, (1280, 720))

#         num_frames = 0
#         max_frames = duration * 30
#         while cap.isOpened():
#             try:
#                 ret, frame = cap.read()
#                 if not ret:
#                     break
#             except Exception as e:
#                 print(e)
#                 continue
#             print("FRAME DTYPE", type(frame))
#             out.write(model([frame], conf_thres, iou_thres))
#             num_frames += 1
#             print("Processed {} frames".format(num_frames))
#             if num_frames == max_frames:
#                 break

#         out.release()

#         # Aforementioned hackiness
#         out_file = tempfile.NamedTemporaryFile(suffix="out.mp4", delete=False)
#         subprocess.run(f"ffmpeg -y -loglevel quiet -stats -i {temp_file.name} -c:v libx264 {out_file.name}".split())

#     return out_file.name

# image_interface = gr.Interface(
#     fn=image_fn,
#     inputs=[
#     gr.inputs.Image(type="pil", label="Input Image"),
#     gr.inputs.Dropdown(
#         choices=[
#             "alshimaa/SEE_model_yolo7",
#             #"kadirnar/yolov7-v0.1",
#         ],
#         default="alshimaa/SEE_model_yolo7",
#         label="Model",
#     )
#     #gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size")
#     #gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
#     #gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold")
# ],
#     outputs=gr.outputs.Image(type="filepath", label="Output Image"),
#     title="Smart Environmental Eye (SEE)",
#     examples=[['image1.jpg', 'alshimaa/SEE_model_yolo7', 640, 0.25, 0.45], ['image2.jpg', 'alshimaa/SEE_model_yolo7', 640, 0.25, 0.45], ['image3.jpg', 'alshimaa/SEE_model_yolo7', 640, 0.25, 0.45]],
#     cache_examples=True,
#     theme='huggingface',
# )


# video_interface = gr.Interface(
#     fn=video_fn,
#     inputs=[
#         gr.inputs.Video(source = "upload", type = "mp4", label = "Input Video"),
#         gr.inputs.Dropdown(
#         choices=[
#             "alshimaa/SEE_model_yolo7",
#             #"kadirnar/yolov7-v0.1",
#         ],
#         default="alshimaa/SEE_model_yolo7",
#         label="Model",
#     ),
#     ],
#     outputs=gr.outputs.Video(type = "mp4", label = "Output Video"),
#     # examples=[
#     #     ["video.mp4", 0.25, 0.45, 0, 2],
       
#     # ],
#     title="Smart Environmental Eye (SEE)",
#     cache_examples=True,
#     theme='huggingface',
   
# )

# if __name__ == "__main__":
#     gr.TabbedInterface(
#         [image_interface, video_interface],
#         ["Run on Images", "Run on Videos"],
#     ).launch()