SEE / app.py
AlshimaaGamalAlsaied
commit
b2eb80d
raw
history blame
6.73 kB
import gradio as gr
#import torch
import yolov5
import subprocess
import tempfile
import time
from pathlib import Path
import uuid
import cv2
import gradio as gr
# # Images
# #torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg', 'zidane.jpg')
# #torch.hub.download_url_to_file('https://raw.githubusercontent.com/obss/sahi/main/tests/data/small-vehicles1.jpeg', 'small-vehicles1.jpeg')
def image_fn(
image: gr.inputs.Image = None,
model_path: gr.inputs.Dropdown = None,
image_size: gr.inputs.Slider = 640,
conf_threshold: gr.inputs.Slider = 0.25,
iou_threshold: gr.inputs.Slider = 0.45,
):
"""
YOLOv5 inference function
Args:
image: Input image
model_path: Path to the model
image_size: Image size
conf_threshold: Confidence threshold
iou_threshold: IOU threshold
Returns:
Rendered image
"""
model = yolov5.load(model_path, device="cpu", hf_model=True, trace=False)
model.conf = conf_threshold
model.iou = iou_threshold
results = model([image], size=image_size)
return results.render()[0]
demo_app = gr.Interface(
fn=image_fn,
inputs=[
gr.inputs.Image(type="pil", label="Input Image"),
gr.inputs.Dropdown(
choices=[
"alshimaa/yolo5_epoch100",
#"kadirnar/yolov7-v0.1",
],
default="alshimaa/yolo5_epoch100",
label="Model",
)
#gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size")
#gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
#gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold")
],
outputs=gr.outputs.Image(type="filepath", label="Output Image"),
title="Object Detector: Identify People Without Mask",
examples=[['img1.png', 'alshimaa/yolo5_epoch100', 640, 0.25, 0.45], ['img2.png', 'alshimaa/yolo5_epoch100', 640, 0.25, 0.45], ['img3.png', 'alshimaa/yolo5_epoch100', 640, 0.25, 0.45]],
cache_examples=True,
live=True,
theme='huggingface',
)
demo_app.launch(debug=True, enable_queue=True)
# def image_fn(
# image: gr.inputs.Image = None,
# model_path: gr.inputs.Dropdown = None,
# image_size: gr.inputs.Slider = 640,
# conf_threshold: gr.inputs.Slider = 0.25,
# iou_threshold: gr.inputs.Slider = 0.45,
# ):
# """
# YOLOv5 inference function
# Args:
# image: Input image
# model_path: Path to the model
# image_size: Image size
# conf_threshold: Confidence threshold
# iou_threshold: IOU threshold
# Returns:
# Rendered image
# """
# model = yolov5.load(model_path, device="cpu", hf_model=True, trace=False)
# model.conf = conf_threshold
# model.iou = iou_threshold
# results = model([image], size=image_size)
# return results.render()[0]
# def video_fn(model_path, video_file, conf_thres, iou_thres, start_sec, duration):
# model = yolov5.load(model_path, device="cpu", hf_model=True, trace=False)
# start_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec))
# end_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec + duration))
# suffix = Path(video_file).suffix
# clip_temp_file = tempfile.NamedTemporaryFile(suffix=suffix)
# subprocess.call(
# f"ffmpeg -y -ss {start_timestamp} -i {video_file} -to {end_timestamp} -c copy {clip_temp_file.name}".split()
# )
# # Reader of clip file
# cap = cv2.VideoCapture(clip_temp_file.name)
# # This is an intermediary temp file where we'll write the video to
# # Unfortunately, gradio doesn't play too nice with videos rn so we have to do some hackiness
# # with ffmpeg at the end of the function here.
# with tempfile.NamedTemporaryFile(suffix=".mp4") as temp_file:
# out = cv2.VideoWriter(temp_file.name, cv2.VideoWriter_fourcc(*"MP4V"), 30, (1280, 720))
# num_frames = 0
# max_frames = duration * 30
# while cap.isOpened():
# try:
# ret, frame = cap.read()
# if not ret:
# break
# except Exception as e:
# print(e)
# continue
# print("FRAME DTYPE", type(frame))
# out.write(model([frame], conf_thres, iou_thres))
# num_frames += 1
# print("Processed {} frames".format(num_frames))
# if num_frames == max_frames:
# break
# out.release()
# # Aforementioned hackiness
# out_file = tempfile.NamedTemporaryFile(suffix="out.mp4", delete=False)
# subprocess.run(f"ffmpeg -y -loglevel quiet -stats -i {temp_file.name} -c:v libx264 {out_file.name}".split())
# return out_file.name
# image_interface = gr.Interface(
# fn=image_fn,
# inputs=[
# gr.inputs.Image(type="pil", label="Input Image"),
# gr.inputs.Dropdown(
# choices=[
# "alshimaa/SEE_model_yolo7",
# #"kadirnar/yolov7-v0.1",
# ],
# default="alshimaa/SEE_model_yolo7",
# label="Model",
# )
# #gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size")
# #gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
# #gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold")
# ],
# outputs=gr.outputs.Image(type="filepath", label="Output Image"),
# title="Smart Environmental Eye (SEE)",
# examples=[['image1.jpg', 'alshimaa/SEE_model_yolo7', 640, 0.25, 0.45], ['image2.jpg', 'alshimaa/SEE_model_yolo7', 640, 0.25, 0.45], ['image3.jpg', 'alshimaa/SEE_model_yolo7', 640, 0.25, 0.45]],
# cache_examples=True,
# theme='huggingface',
# )
# video_interface = gr.Interface(
# fn=video_fn,
# inputs=[
# gr.inputs.Video(source = "upload", type = "mp4", label = "Input Video"),
# gr.inputs.Dropdown(
# choices=[
# "alshimaa/SEE_model_yolo7",
# #"kadirnar/yolov7-v0.1",
# ],
# default="alshimaa/SEE_model_yolo7",
# label="Model",
# ),
# ],
# outputs=gr.outputs.Video(type = "mp4", label = "Output Video"),
# # examples=[
# # ["video.mp4", 0.25, 0.45, 0, 2],
# # ],
# title="Smart Environmental Eye (SEE)",
# cache_examples=True,
# theme='huggingface',
# )
# if __name__ == "__main__":
# gr.TabbedInterface(
# [image_interface, video_interface],
# ["Run on Images", "Run on Videos"],
# ).launch()