Spaces:
Sleeping
Sleeping
import gradio as gr | |
#import torch | |
import yolov5 | |
import subprocess | |
import tempfile | |
import time | |
from pathlib import Path | |
import uuid | |
import cv2 | |
import gradio as gr | |
# # Images | |
# #torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg', 'zidane.jpg') | |
# #torch.hub.download_url_to_file('https://raw.githubusercontent.com/obss/sahi/main/tests/data/small-vehicles1.jpeg', 'small-vehicles1.jpeg') | |
def image_fn( | |
image: gr.inputs.Image = None, | |
model_path: gr.inputs.Dropdown = None, | |
image_size: gr.inputs.Slider = 640, | |
conf_threshold: gr.inputs.Slider = 0.25, | |
iou_threshold: gr.inputs.Slider = 0.45, | |
): | |
""" | |
YOLOv5 inference function | |
Args: | |
image: Input image | |
model_path: Path to the model | |
image_size: Image size | |
conf_threshold: Confidence threshold | |
iou_threshold: IOU threshold | |
Returns: | |
Rendered image | |
""" | |
model = yolov5.load(model_path, device="cpu", hf_model=True, trace=False) | |
model.conf = conf_threshold | |
model.iou = iou_threshold | |
results = model([image], size=image_size) | |
return results.render()[0] | |
demo_app = gr.Interface( | |
fn=image_fn, | |
inputs=[ | |
gr.inputs.Image(type="pil", label="Input Image"), | |
gr.inputs.Dropdown( | |
choices=[ | |
"alshimaa/yolo5_epoch100", | |
#"kadirnar/yolov7-v0.1", | |
], | |
default="alshimaa/yolo5_epoch100", | |
label="Model", | |
) | |
#gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size") | |
#gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"), | |
#gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold") | |
], | |
outputs=gr.outputs.Image(type="filepath", label="Output Image"), | |
title="Object Detector: Identify People Without Mask", | |
examples=[['img1.png', 'alshimaa/yolo5_epoch100', 640, 0.25, 0.45], ['img2.png', 'alshimaa/yolo5_epoch100', 640, 0.25, 0.45], ['img3.png', 'alshimaa/yolo5_epoch100', 640, 0.25, 0.45]], | |
cache_examples=True, | |
live=True, | |
theme='huggingface', | |
) | |
demo_app.launch(debug=True, enable_queue=True) | |
# def image_fn( | |
# image: gr.inputs.Image = None, | |
# model_path: gr.inputs.Dropdown = None, | |
# image_size: gr.inputs.Slider = 640, | |
# conf_threshold: gr.inputs.Slider = 0.25, | |
# iou_threshold: gr.inputs.Slider = 0.45, | |
# ): | |
# """ | |
# YOLOv5 inference function | |
# Args: | |
# image: Input image | |
# model_path: Path to the model | |
# image_size: Image size | |
# conf_threshold: Confidence threshold | |
# iou_threshold: IOU threshold | |
# Returns: | |
# Rendered image | |
# """ | |
# model = yolov5.load(model_path, device="cpu", hf_model=True, trace=False) | |
# model.conf = conf_threshold | |
# model.iou = iou_threshold | |
# results = model([image], size=image_size) | |
# return results.render()[0] | |
# def video_fn(model_path, video_file, conf_thres, iou_thres, start_sec, duration): | |
# model = yolov5.load(model_path, device="cpu", hf_model=True, trace=False) | |
# start_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec)) | |
# end_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec + duration)) | |
# suffix = Path(video_file).suffix | |
# clip_temp_file = tempfile.NamedTemporaryFile(suffix=suffix) | |
# subprocess.call( | |
# f"ffmpeg -y -ss {start_timestamp} -i {video_file} -to {end_timestamp} -c copy {clip_temp_file.name}".split() | |
# ) | |
# # Reader of clip file | |
# cap = cv2.VideoCapture(clip_temp_file.name) | |
# # This is an intermediary temp file where we'll write the video to | |
# # Unfortunately, gradio doesn't play too nice with videos rn so we have to do some hackiness | |
# # with ffmpeg at the end of the function here. | |
# with tempfile.NamedTemporaryFile(suffix=".mp4") as temp_file: | |
# out = cv2.VideoWriter(temp_file.name, cv2.VideoWriter_fourcc(*"MP4V"), 30, (1280, 720)) | |
# num_frames = 0 | |
# max_frames = duration * 30 | |
# while cap.isOpened(): | |
# try: | |
# ret, frame = cap.read() | |
# if not ret: | |
# break | |
# except Exception as e: | |
# print(e) | |
# continue | |
# print("FRAME DTYPE", type(frame)) | |
# out.write(model([frame], conf_thres, iou_thres)) | |
# num_frames += 1 | |
# print("Processed {} frames".format(num_frames)) | |
# if num_frames == max_frames: | |
# break | |
# out.release() | |
# # Aforementioned hackiness | |
# out_file = tempfile.NamedTemporaryFile(suffix="out.mp4", delete=False) | |
# subprocess.run(f"ffmpeg -y -loglevel quiet -stats -i {temp_file.name} -c:v libx264 {out_file.name}".split()) | |
# return out_file.name | |
# image_interface = gr.Interface( | |
# fn=image_fn, | |
# inputs=[ | |
# gr.inputs.Image(type="pil", label="Input Image"), | |
# gr.inputs.Dropdown( | |
# choices=[ | |
# "alshimaa/SEE_model_yolo7", | |
# #"kadirnar/yolov7-v0.1", | |
# ], | |
# default="alshimaa/SEE_model_yolo7", | |
# label="Model", | |
# ) | |
# #gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size") | |
# #gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"), | |
# #gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold") | |
# ], | |
# outputs=gr.outputs.Image(type="filepath", label="Output Image"), | |
# title="Smart Environmental Eye (SEE)", | |
# examples=[['image1.jpg', 'alshimaa/SEE_model_yolo7', 640, 0.25, 0.45], ['image2.jpg', 'alshimaa/SEE_model_yolo7', 640, 0.25, 0.45], ['image3.jpg', 'alshimaa/SEE_model_yolo7', 640, 0.25, 0.45]], | |
# cache_examples=True, | |
# theme='huggingface', | |
# ) | |
# video_interface = gr.Interface( | |
# fn=video_fn, | |
# inputs=[ | |
# gr.inputs.Video(source = "upload", type = "mp4", label = "Input Video"), | |
# gr.inputs.Dropdown( | |
# choices=[ | |
# "alshimaa/SEE_model_yolo7", | |
# #"kadirnar/yolov7-v0.1", | |
# ], | |
# default="alshimaa/SEE_model_yolo7", | |
# label="Model", | |
# ), | |
# ], | |
# outputs=gr.outputs.Video(type = "mp4", label = "Output Video"), | |
# # examples=[ | |
# # ["video.mp4", 0.25, 0.45, 0, 2], | |
# # ], | |
# title="Smart Environmental Eye (SEE)", | |
# cache_examples=True, | |
# theme='huggingface', | |
# ) | |
# if __name__ == "__main__": | |
# gr.TabbedInterface( | |
# [image_interface, video_interface], | |
# ["Run on Images", "Run on Videos"], | |
# ).launch() | |