File size: 10,226 Bytes
979e31c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# Code ported from https://github.com/openai/CLIP

import hashlib
import os
import urllib
import warnings
from typing import Union, List

import torch
from PIL import Image
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize, RandomResizedCrop, InterpolationMode, RandomCrop, RandomRotation
from tqdm import tqdm

from clip.model import build_model
# from clip.tokenizer import SimpleTokenizer as _Tokenizer

__all__ = ["available_models", "load", "tokenize"]
# _tokenizer = _Tokenizer()

_MODELS = {
    "RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
    "RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt",
    "RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt",
    "ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
}


class NormalizeByImage(object):
    """Normalize an tensor image with mean and standard deviation.
    Given mean: ``(M1,...,Mn)`` and std: ``(S1,..,Sn)`` for ``n`` channels, this transform
    will normalize each channel of the input ``torch.*Tensor`` i.e.
    ``input[channel] = (input[channel] - mean[channel]) / std[channel]``
    Args:
        mean (sequence): Sequence of means for each channel.
        std (sequence): Sequence of standard deviations for each channel.
    """

    def __call__(self, tensor):
        """
        Args:
            tensor (Tensor): Tensor image of size (C, H, W) to be normalized.
        Returns:
            Tensor: Normalized Tensor image.
        """
        for t in tensor:
            t.sub_(t.mean()).div_(t.std() + 1e-7)
        return tensor


def _download(url: str, root: str = os.path.expanduser("~/.cache/clip")):
    os.makedirs(root, exist_ok=True)
    filename = os.path.basename(url)

    expected_sha256 = url.split("/")[-2]
    download_target = os.path.join(root, filename)

    if os.path.exists(download_target) and not os.path.isfile(download_target):
        raise RuntimeError(f"{download_target} exists and is not a regular file")

    if os.path.isfile(download_target):
        if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256:
            return download_target
        else:
            warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")

    with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
        with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True) as loop:
            while True:
                buffer = source.read(8192)
                if not buffer:
                    break

                output.write(buffer)
                loop.update(len(buffer))

    if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256:
        raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match")

    return download_target

def _convert_to_rgb(image):
    return image.convert('RGB')

def _transform(n_px_tr: int, n_px_val: int, is_train: bool, normalize:str = "dataset", preprocess:str = "downsize"):
    #normalize = Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
    # print(n_px_tr)
    # print(n_px_val)
    if normalize == "img":
        normalize = NormalizeByImage()
    elif normalize == "dataset":
        normalize = Normalize((47.1314, 40.8138, 53.7692, 46.2656, 28.7243), (47.1314, 40.8138, 53.7692, 46.2656, 28.7243))  # normalize for CellPainting
    if normalize == "None":
        normalize = None

    if is_train:
        if preprocess == "crop":
            #resize = RandomResizedCrop(n_px_tr, scale=(0.25,0.3), ratio=(0.95, 1.05), interpolation=InterpolationMode.BICUBIC)
            resize =  RandomCrop(n_px_tr)
        elif preprocess == "downsize":
            resize = RandomResizedCrop(n_px_tr, scale=(0.9, 1.0), interpolation=InterpolationMode.BICUBIC)
        elif preprocess == "rotate":
            resize = Compose([
                              RandomRotation((0, 360)),
                              CenterCrop(n_px_tr)
                            ])

    else:
        if preprocess == "crop" or "rotate":
            resize = Compose([
                              #RandomResizedCrop(n_px_tr, scale=(0.25,0.3), ratio=(0.95, 1.05), interpolation=InterpolationMode.BICUBIC)
                              CenterCrop(n_px_val),
                              ])
        elif preprocess == "downsize":
            resize = Compose([
                              Resize(n_px_val, interpolation=InterpolationMode.BICUBIC),
                              CenterCrop(n_px_val),
                              ])
    if normalize:
        return Compose([
            ToTensor(),
            resize,
            normalize,
        ])
    else:
        return Compose([
            ToTensor(),
            resize,
        ])



def available_models() -> List[str]:
    """Returns the names of available CLIP models"""
    return list(_MODELS.keys())


def load(name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", jit=True, is_train=False, pretrained=True):
    """Load a CLIP model
    Parameters
    ----------
    name : str
        A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict
    device : Union[str, torch.device]
        The device to put the loaded model
    jit : bool
        Whether to load the optimized JIT model (default) or more hackable non-JIT model.
    Returns
    -------
    model : torch.nn.Module
        The CLIP model
    preprocess : Callable[[PIL.Image], torch.Tensor]
        A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input
    """
    if name in _MODELS:
        model_path = _download(_MODELS[name])
    elif os.path.isfile(name):
        model_path = name
    else:
        raise RuntimeError(f"Model {name} not found; available models = {available_models()}")

    try:
        # loading JIT archive
        model = torch.jit.load(model_path, map_location=device if jit else "cpu").eval()
        state_dict = None
    except RuntimeError:
        # loading saved state dict
        if jit:
            warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead")
            jit = False
        state_dict = torch.load(model_path, map_location="cpu")

    if not jit:
        try:
            model = build_model(state_dict or model.state_dict()).to(device)
        except KeyError:
            sd = {k[7:]: v for k,v in state_dict["state_dict"].items()}
            model = build_model(sd).to(device)

        if str(device) == "cpu":
            model.float()
        return model, \
               _transform(model.visual.input_resolution, is_train=True), \
               _transform(model.visual.input_resolution, is_train=False)

    # patch the device names
    device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[])
    device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1]

    def patch_device(module):
        graphs = [module.graph] if hasattr(module, "graph") else []
        if hasattr(module, "forward1"):
            graphs.append(module.forward1.graph)

        for graph in graphs:
            for node in graph.findAllNodes("prim::Constant"):
                if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"):
                    node.copyAttributes(device_node)

    model.apply(patch_device)
    patch_device(model.encode_image)
    patch_device(model.encode_text)

    # patch dtype to float32 on CPU
    if str(device) == "cpu":
        float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[])
        float_input = list(float_holder.graph.findNode("aten::to").inputs())[1]
        float_node = float_input.node()

        def patch_float(module):
            graphs = [module.graph] if hasattr(module, "graph") else []
            if hasattr(module, "forward1"):
                graphs.append(module.forward1.graph)

            for graph in graphs:
                for node in graph.findAllNodes("aten::to"):
                    inputs = list(node.inputs())
                    for i in [1, 2]:  # dtype can be the second or third argument to aten::to()
                        if inputs[i].node()["value"] == 5:
                            inputs[i].node().copyAttributes(float_node)

        model.apply(patch_float)
        patch_float(model.encode_image)
        patch_float(model.encode_text)

        model.float()

    return model, \
           _transform(model.input_resolution.item(), is_train=True), \
           _transform(model.input_resolution.item(), is_train=False)


def tokenize(texts: Union[str, List[str]], context_length: int = 77) -> torch.LongTensor:
    """
    Returns the tokenized representation of given input string(s)
    Parameters
    ----------
    texts : Union[str, List[str]]
        An input string or a list of input strings to tokenize
    context_length : int
        The context length to use; all CLIP models use 77 as the context length
    Returns
    -------
    A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]
    """
    if isinstance(texts, str):
        texts = [texts]

    sot_token = _tokenizer.encoder["<start_of_text>"]
    eot_token = _tokenizer.encoder["<end_of_text>"]
    all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts]
    result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)

    for i, tokens in enumerate(all_tokens):
        if len(tokens) > context_length: # Truncate
            tokens = tokens[:context_length]
        result[i, :len(tokens)] = torch.tensor(tokens)

    return result