File size: 9,141 Bytes
979e31c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import os
import torch
import numpy as np
import pandas as pd
from pathlib import Path
from scipy.io import mmread
from torchvision.transforms import Compose
from torch.utils.data import Dataset

class CellPainting(Dataset):
    def __init__(self, sample_index_file: str, image_directory_path: str = None, molecule_file: str = None, label_matrix_file: str = None,
                 label_row_index_file: str = None, label_col_index_file: str = None, auxiliary_labels=None,
                 transforms=None, group_views: bool = False,
                 subset: float = 1., num_classes: int = None, verbose: bool = False):
        """ Read samples from cellpainting dataset."""
        self.verbose = verbose
        self.molecules = False
        self.images = False

        assert (os.path.exists(sample_index_file))
        print(image_directory_path)
        print(molecule_file)
        # Read sample index
        sample_index = pd.read_csv(sample_index_file, sep=",", header=0)
        sample_index.set_index(["SAMPLE_KEY"])

        # read auxiliary labels if provided
        if auxiliary_labels is not None:
            pddata = pd.read_csv(auxiliary_labels, sep=",", header=0)
            self.auxiliary_data = pddata.as_matrix()[:, 2:].astype(np.float32)
            # threshold
            self.auxiliary_data[self.auxiliary_data < 0.75] = -1
            self.auxiliary_data[self.auxiliary_data >= 0.75] = 1
            self.auxiliary_assays = list(pddata)[2:]
            self.n_auxiliary_classes = len(self.auxiliary_assays)
            self.auxiliary_smiles = pddata["SMILES"].tolist()
        else:
            self.n_auxiliary_classes = 0

        if image_directory_path:
            self.images = True
            assert (os.path.exists(image_directory_path))

            if group_views:
                sample_groups = sample_index.groupby(['PLATE_ID', 'WELL_POSITION'])
                sample_keys = list(sample_groups.groups.keys())
                sample_index = sample_groups
                self.sample_to_smiles = None  # TODO
            else:
                sample_keys = sample_index['SAMPLE_KEY'].tolist()

                if auxiliary_labels is not None:
                    self.sample_to_smiles = dict(zip(sample_index.SAMPLE_KEY, [self.auxiliary_smiles.index(s) for s in sample_index.SMILES]))
                else:
                    self.sample_to_smiles = None

        if molecule_file:
            self.molecules = True

            assert (os.path.exists(molecule_file))

            molecule_df = pd.read_hdf(molecule_file, key="df")
            #molecule_objs = {index: row.values for index, row in molecule_df.iterrows()}

            #keys = list(set(sample_keys) & set(list(molecule_df.index.values)))
            mol_keys = list(molecule_df.index.values)

        if self.images and self.molecules:
            keys = list(set(sample_keys) & set(list(molecule_df.index.values)))
        elif self.images:
            keys = sample_keys
        elif self.molecules:
            keys = mol_keys


        if len(keys) == 0:
            raise Exception("Empty dataset!")
        else:
            self.log("Found {} samples".format(len(keys)))

        if subset != 1.:
            sample_keys = sample_keys[:int(len(sample_keys) * subset)]

        # Read Label Matrix if specified
        if label_matrix_file is not None:
            assert (os.path.exists(label_matrix_file))

            assert (os.path.exists(label_row_index_file))

            assert (os.path.exists(label_col_index_file))


            if label_row_index_file is not None and label_col_index_file is not None:
                col_index = pd.read_csv(label_col_index_file, sep=",", header=0)
                row_index = pd.read_csv(label_row_index_file, sep=",", header=0)
                label_matrix = mmread(label_matrix_file).tocsr()
                # --
                self.label_matrix = label_matrix
                self.row_index = row_index
                self.col_index = col_index
                if group_views:
                    self.label_dict = dict(
                        (key, sample_groups.get_group(key).iloc[0].ROW_NR_LABEL_MAT) for key in sample_keys)
                else:
                    self.label_dict = dict(zip(sample_index.SAMPLE_KEY, sample_index.ROW_NR_LABEL_MAT))
                self.n_classes = label_matrix.shape[1]
            else:
                raise Exception("If label is specified index files must be passed!")
        else:
            self.label_matrix = None
            self.row_index = None
            self.col_index = None
            self.label_dict = None
            self.n_classes = num_classes

        if auxiliary_labels is not None:
            self.n_classes += self.n_auxiliary_classes

        # expose everything important
        self.data_directory = image_directory_path
        self.sample_index = sample_index
        if self.molecules:
            self.molecule_objs = molecule_df
        self.keys = keys
        self.n_samples = len(keys)
        self.sample_keys = list(keys)
        self.group_views = group_views
        self.transforms = transforms

        # load first sample and check shape
        i = 0

        sample = self[i][0] if self.molecules else self[i] #getitem returns tuple of img and fp


        # while sample["input"] is np.nan and i < len(self):
        #     sample = self[i][0] if self.molecules else self[i]
        #     i += 1
        #
        # if sample["input"] is not None and not np.nan:
        #     self.data_shape = sample["input"].shape
        # else:
        #     self.data_shape = "Unknown"
        # self.log("Discovered {} samples (subset={}) with shape {}".format(self.n_samples, subset, self.data_shape))


    def __len__(self):
        return len(self.keys)

## TODO: Clean!
    def __getitem__(self, idx):
        sample_key = self.keys[idx]


        if self.molecules and self.images:
            mol = self.molecule_objs.loc[sample_key].values
            img = self.read_img(sample_key)
            # mol = list(self.molecule_objs.loc[sample_key].values)
            return img, mol
        elif self.images:
            img = self.read_img(sample_key)
            return img
        elif self.molecules:
            mol = self.molecule_objs.loc[sample_key].values
            return mol


    @property
    def shape(self):
        return self.data_shape

    @property
    def num_classes(self):
        return self.n_classes

    def log(self, message):
        if self.verbose:
            print(message)


    def read_img(self, key):
        if self.group_views:
            X = self.load_view_group(key)
        else:
            filepath = os.path.join(self.data_directory, "{}.npz".format(key))
            if os.path.exists(filepath):
                X = self.load_view(filepath=filepath)

                index = int(np.where(self.sample_index["SAMPLE_KEY"]==key)[0])

                #cpd = str(self.sample_index["CPD_NAME"])

            else:
                #print("ERROR: Missing sample '{}'".format(key))
                return dict(input=np.nan, ID=key)

        if self.transforms:
            X = self.transforms(X)

        # get label
        if self.label_dict is not None:
            label_idx = self.label_dict[key]
            y = self.label_matrix[label_idx].toarray()[0].astype(np.float32)
            if self.sample_to_smiles is not None and key in self.sample_to_smiles:
                y = np.concatenate([y, self.auxiliary_data[self.sample_to_smiles[key], :]])

            return dict(input=X, target=y, ID=key)
        else:
            return dict(input=X, row_id=index, ID=key)


    def get_sample_keys(self):
        return self.sample_keys.copy()

    def load_view(self, filepath):
        """Load all channels for one sample"""
        npz = np.load(filepath, allow_pickle=True)
        if "sample" in npz:
            image = npz["sample"].astype(np.float32)
            #image_reshaped = np.transpose(image, (2, 0, 1))
            # for c in range(image.shape[-1]):
                # image[:, :, c] = (image[:, :, c] - image[:, :, c].mean()) / image[:, :, c].std()
                # image[:, :, c] = ((image[:, :, c] - image[:, :, c].mean()) / image[:, :, c].std() * 255).astype(np.uint8)
            # image = (image - image.mean()) / image.std()
            return image

        return None

    def load_view_group(self, groupkey):
        result = np.empty((1040, 2088 - 12, 5), dtype=np.uint8)
        viewgroup = self.sample_index.get_group(groupkey)
        for i, view in enumerate(viewgroup.sort_values("SITE", ascending=True).iterrows()):
            corner = (0 if int(i / 3) == 0 else 520, i % 3 * 692)
            filepath = os.path.join(self.data_directory, "{}.npz".format(view[1].SAMPLE_KEY))
            v = self.load_view(filepath=filepath)[:, 4:, :]
            # for j in range(v.shape[-1]):
            #    plt.imshow(v[:, :, j])
            #    plt.savefig("{}-{}-{}-{}.png".format(groupkey[0], groupkey[1], i, j))
            result[corner[0]:corner[0] + 520, corner[1]:corner[1] + 692, :] = v
        return result